Dynamic Geometry: P112

Geometry Level 5

The diagram shows a black circle. A horizontal black chord is drawn creating two circular segments, their respective heights are 4 4 and 9 9 . In each circular segment, we inscribe a triangle. In both triangles we inscribe a square. The triangles are both evolving so that the two orange angles are always equal. When the ratio of upper square's area to the lower square's area is equal to 961 2116 \dfrac{961}{2116} , the distance between the two moving points of both triangles is an integer, what is this integer?


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 11, 2021

Let the dividing chord of the circle be A B AB , the upper and lower variable triangles be A B C \triangle ABC and A B C \triangle ABC' respectively, and the measure of the orange angle be θ \theta . Referring the calculations in Dynamic Geometry: P96 Series , the radius of the circle is 6.5 6.5 , A B = 12 AB=12 , A C B = π tan 1 12 5 \angle ACB = \pi - \tan^{-1} \frac {12}5 , and A C B = tan 1 12 5 \angle AC'B = \tan^{-1} \frac {12}5 .

Now let us consider the relationship between the side length s s of a square K L M N KLMN to the height C D = h CD=h and width A B = w AB=w of the triangle A B C \triangle ABC that inscribes it. Note that K L C \triangle KLC and A B C \triangle ABC are similar. Let the height of K L C \triangle KLC be C E CE , then C E = s w h CE = \dfrac swh . From C D = C E + E D CD = CE + ED , we have

h = s w h + s s = h 1 + h w = w h h + w = 12 h h + 12 Since w = A B = 12 h = \frac swh + s \implies s = \frac h{1+\frac hw} = \frac {wh}{h+w} = \frac {12h}{h+12} \quad \small \blue{\text{Since }w=AB=12}

Similarly for the square in A B C \triangle ABC' , s = 12 h h + 12 s' = \dfrac {12h'}{h'+12} .

Since A C B C ACBC' is a cyclic quadrilateral , B C C = B A C = θ \angle BCC' = \angle BAC' = \theta and B C C = B A C = θ \angle BC'C = \angle BAC = \theta . Therefore B C C \triangle BCC' is isosceles and B C = B C = b BC = BC' = b . By sine rule ,

B C sin C A B = A B sin A C B b = 12 sin θ sin ( π tan 1 12 5 ) = 12 sin θ sin ( tan 1 12 5 ) = 13 sin θ \frac {BC}{\sin \angle CAB} = \frac {AB}{\sin \angle ACB} \implies b = \frac {12 \sin \theta}{\sin \left(\pi - \tan^{-1} \frac {12}5\right)} = \frac {12 \sin \theta}{\sin \left(\tan^{-1} \frac {12}5 \right)} = 13 \sin \theta

Then { h = b sin C B A = b sin ( tan 1 12 5 θ ) = sin θ ( 12 cos θ 5 sin θ ) h = b sin C B A = b sin ( tan 1 12 5 + θ ) = sin θ ( 12 cos θ + 5 sin θ ) \begin{cases} h = b \sin \angle CBA = b \sin \left(\tan^{-1} \frac {12}5 - \theta \right) & = \sin \theta (12 \cos \theta - 5 \sin \theta ) \\ h' = b \sin \angle C'BA = b \sin \left(\tan^{-1} \frac {12}5 + \theta \right) & = \sin \theta (12 \cos \theta + 5 \sin \theta) \end{cases}

The ratio of areas of the square s 2 s 2 = 961 2116 s s = 12 h ( h + 12 ) 12 h ( h + 12 ) = h ( h + 12 ) h ( h + 12 ) = 31 46 \dfrac {s^2}{s'^2} = \dfrac {961}{2116} \implies \dfrac s{s'} = \dfrac {12h(h'+12)}{12h'(h+12)} = \dfrac {h(h'+12)}{h'(h+12)} = \dfrac {31}{46} . Therefore,

( 12 cos θ 5 sin θ ) ( sin θ ( 12 cos θ + 5 sin θ ) + 12 ) ( 12 cos θ + 5 sin θ ) ( sin θ ( 12 cos θ 5 sin θ ) + 12 ) = 31 46 sin θ ( 144 cos 2 θ 25 sin 2 θ ) + 144 cos θ 308 sin θ = 0 169 sin θ cos 2 θ + 144 cos θ 333 sin θ = 0 169 cos 2 θ + 144 cot θ 333 = 0 Let t = tan θ 169 1 + t 2 + 144 t 333 = 0 ( 3 t 2 ) ( 111 t 2 + 26 t + 72 ) = 0 For real value of t t = tan θ = 2 3 \begin{aligned} \frac {(12\cos \theta - 5\sin \theta)(\sin \theta(12\cos \theta + 5\sin \theta) + 12)} {(12\cos \theta + 5\sin \theta)(\sin \theta(12\cos \theta - 5\sin \theta) + 12)} & = \frac {31}{46} \\ \sin \theta(144 \cos^2 \theta - 25 \sin^2 \theta) + 144 \cos \theta - 308 \sin \theta & = 0 \\ 169 \sin \theta \cos^2 \theta + 144 \cos \theta - 333 \sin \theta & = 0 \\ 169 \cos^2 \theta + 144 \cot \theta - 333 & = 0 & \small \blue{\text{Let }t = \tan \theta} \\ \frac {169}{1+t^2} + \frac {144}t - 333 & = 0 \\ (3t-2)(111t^2 + 26t+72) & = 0 & \small \blue{\text{For real value of }t} \\ \implies t & = \tan \theta = \frac 23 \end{aligned}

Then the distance between the two moving points C C = 2 b cos θ = 26 sin θ cos θ = 26 2 13 3 13 = 12 CC' = 2b\cos \theta = 26 \sin \theta \cos \theta = 26 \cdot \dfrac 2{\sqrt{13}} \cdot \dfrac 3{\sqrt{13}} = \boxed{12} .

Thank you for posting sir.

Valentin Duringer - 2 months ago

Log in to reply

Your nice set of dynamic geometry problems are like a collection of paintings by Peter Paul Rubens in an art museum.

Vijay Simha - 2 months ago

Log in to reply

Well I think I do not need any more compliments after that... thank you so much !

Valentin Duringer - 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...