and . In each circular segment, we inscribe a triangle. In both triangles we inscribe a square. The center of each square traces a locus (brown curves). The area bounded by the brown curves can be rounded to the nearest integer. What is the square root of this integer?
The diagram shows a black circle. A horizontal black chord is drawn creating two circular segments, their respective heights are
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
From the compiled calculations in Dynamic Geometry: P96 Series , we know that the radius of the circle is 6 . 5 , the dividing chord A B = 1 2 , and if the upper and lower moving points C and C ′ respectively, then ∠ A C B = π − t a n − 1 5 1 2 and ∠ A C ′ B = tan − 1 5 1 2 .
Let the midpoint of A B , M , be the origin of the x y -plane, an arbitrary point on the upper locus or the center of the upper rectangle be P ( x , y ) , ∠ C A B = θ , the height of △ A B C , C D , be h , and the side length of the square be s .
By sine rule ,
A C ⟹ h = sin ∠ A C B A B ⋅ sin ∠ A B C = sin ( π − tan − 1 5 1 2 ) 1 2 sin ( tan − 1 5 1 2 − θ ) = 1 2 cos θ − 5 sin θ = A C ⋅ sin θ = ( 1 2 cos θ − 5 sin θ ) sin θ = 2 1 2 sin 2 θ + 5 cos 2 θ − 5 = 2 ( 1 + t 2 ) 2 4 t + 5 ( 1 − t 2 ) − 5 ( 1 + t 2 ) = 1 + t 2 1 2 t − 5 t 2 Let t = tan θ
From the compiled calculations, we have:
s = 1 2 + h 1 2 h = 1 2 ( 1 + t 2 ) + 1 2 t − 5 t 2 1 2 ( 1 2 t − 5 t 2 ) = 7 t 2 + 1 2 t + 1 2 1 2 ( 1 2 t − 5 t 2 )
We note that y = 2 s = 7 t 2 + 1 2 t + 1 2 6 ( 1 2 t − 5 t 2 ) and
x = s cot θ + 2 s − 6 = 7 t 2 + 1 2 t + 1 2 1 2 ( 6 − 5 t − 6 t 2 )
Then the area under the locus:
A = 2 ∫ 0 2 3 x d y = 2 ∫ 0 2 3 7 t 2 + 1 2 t + 1 2 1 2 ( 6 − 5 t − 6 t 1 ) d ( 7 t 2 + 1 2 t + 1 2 6 ( 1 2 t − 5 t 2 ) ) = 3 4 5 6 ∫ 0 3 2 ( 7 t 2 + 1 2 t + 1 2 ) 3 ( 6 − 5 t − 6 t 1 ) 2 d t = 4 3 ( 1 6 9 3 cot − 1 ( 2 3 ) − 6 6 ) ≈ 1 2 . 1 9 7 6 8 2 7 8 7 1
Similarly for the lower triangle, x = 1 7 t 2 + 1 2 t + 1 2 1 2 ( 6 + 5 t − 6 t 2 , y = 1 7 t 2 + 1 2 t + 1 2 6 ( 1 2 t + 5 t 2 ) , and the area under the locus:
A ′ = 2 ∫ 0 7 3 6 x d y = 2 ∫ 0 7 3 6 1 7 t 2 + 1 2 t + 1 2 1 2 ( 6 + 5 t − 6 t 1 ) d ( 1 7 t 2 + 1 2 t + 1 2 6 ( 1 2 t + 5 t 2 ) ) = 3 4 5 6 ∫ 0 2 3 ( 1 7 t 2 + 1 2 t + 1 2 ) 3 ( 6 + 5 t − 6 t 1 ) 2 d t = 9 8 3 ( 1 6 9 4 2 tan − 1 ( 7 6 ) − 4 2 ) ≈ 2 3 . 7 5 6 2 3 7 2 2 0 5
Therefore the area bounded by the two loci A + A ′ ≈ 3 5 . 9 5 3 9 2 0 0 0 7 6 ≈ 3 6 . And the required answer is 6 .