Dynamic Geometry: P113

Geometry Level 5

The diagram shows a black circle. A horizontal black chord is drawn creating two circular segments, their respective heights are 4 4 and 9 9 . In each circular segment, we inscribe a triangle. In both triangles we inscribe a square. The center of each square traces a locus (brown curves). The area bounded by the brown curves can be rounded to the nearest integer. What is the square root of this integer?


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 24, 2021

From the compiled calculations in Dynamic Geometry: P96 Series , we know that the radius of the circle is 6.5 6.5 , the dividing chord A B = 12 AB=12 , and if the upper and lower moving points C C and C C' respectively, then A C B = π t a n 1 12 5 \angle ACB = \pi - tan^{-1} \frac {12}5 and A C B = tan 1 12 5 \angle AC'B = \tan^{-1} \frac {12}5 .

Let the midpoint of A B AB , M M , be the origin of the x y xy -plane, an arbitrary point on the upper locus or the center of the upper rectangle be P ( x , y ) P(x,y) , C A B = θ \angle CAB = \theta , the height of A B C \triangle ABC , C D CD , be h h , and the side length of the square be s s .

By sine rule ,

A C = A B sin A B C sin A C B = 12 sin ( tan 1 12 5 θ ) sin ( π tan 1 12 5 ) = 12 cos θ 5 sin θ h = A C sin θ = ( 12 cos θ 5 sin θ ) sin θ = 12 sin 2 θ + 5 cos 2 θ 5 2 Let t = tan θ = 24 t + 5 ( 1 t 2 ) 5 ( 1 + t 2 ) 2 ( 1 + t 2 ) = 12 t 5 t 2 1 + t 2 \begin{aligned} AC & = \frac {AB \cdot \sin \angle ABC}{\sin \angle ACB} = \frac {12 \sin \left(\tan^{-1} \frac {12}5-\theta \right)}{\sin \left(\pi - \tan^{-1} \frac {12}5\right)} = 12\cos \theta - 5\sin \theta \\ \implies h & = AC \cdot \sin \theta = (12\cos \theta - 5 \sin \theta) \sin \theta = \frac {12\sin 2\theta + 5 \cos 2\theta - 5}2 & \small \blue{\text{Let }t = \tan \theta} \\ & = \frac {24t + 5(1-t^2)-5(1+t^2)}{2(1+t^2)} = \frac {12t - 5t^2}{1+t^2} \end{aligned}

From the compiled calculations, we have:

s = 12 h 12 + h = 12 ( 12 t 5 t 2 ) 12 ( 1 + t 2 ) + 12 t 5 t 2 = 12 ( 12 t 5 t 2 ) 7 t 2 + 12 t + 12 \begin{aligned} s & = \frac {12h}{12+h} = \frac {12(12t-5t^2)}{12(1+t^2)+12t-5t^2} = \frac {12(12t-5t^2)}{7t^2+12t+12} \end{aligned}

We note that y = s 2 = 6 ( 12 t 5 t 2 ) 7 t 2 + 12 t + 12 y = \dfrac s2 = \dfrac {6(12t-5t^2)}{7t^2+12t+12} and

x = s cot θ + s 2 6 = 12 ( 6 5 t 6 t 2 ) 7 t 2 + 12 t + 12 x = s \cot \theta + \frac s2 - 6 = \frac {12(6-5t-6t^2)}{7t^2+12t+12}

Then the area under the locus:

A = 2 0 3 2 x d y = 2 0 3 2 12 ( 6 5 t 6 t 1 ) 7 t 2 + 12 t + 12 d ( 6 ( 12 t 5 t 2 ) 7 t 2 + 12 t + 12 ) = 3456 0 2 3 ( 6 5 t 6 t 1 ) 2 ( 7 t 2 + 12 t + 12 ) 3 d t = 3 4 ( 169 3 cot 1 ( 2 3 ) 66 ) 12.1976827871 \begin{aligned} A & = 2 \int_0^\frac 32 x \ \ce dy \\ & = 2 \int_0^\frac 32 \frac {12(6-5t-6t^1)}{7t^2+12t+12}\ \ce d \left(\frac {6(12t-5t^2)}{7t^2+12t+12} \right) \\ & = 3456 \int_0^\frac 23 \frac {(6-5t-6t^1)^2}{(7t^2+12t+12)^3}\ \ce d t \\ & = \frac 34 \left(169\sqrt 3 \cot^{-1} (2\sqrt 3) -66 \right) \\ & \approx 12.1976827871 \end{aligned}

Similarly for the lower triangle, x = 12 ( 6 + 5 t 6 t 2 17 t 2 + 12 t + 12 x = \dfrac {12(6+5t-6t^2}{17t^2+12t+12} , y = 6 ( 12 t + 5 t 2 ) 17 t 2 + 12 t + 12 y=\dfrac {6(12t+5t^2)}{17t^2+12t+12} , and the area under the locus:

A = 2 0 36 7 x d y = 2 0 36 7 12 ( 6 + 5 t 6 t 1 ) 17 t 2 + 12 t + 12 d ( 6 ( 12 t + 5 t 2 ) 17 t 2 + 12 t + 12 ) = 3456 0 3 2 ( 6 + 5 t 6 t 1 ) 2 ( 17 t 2 + 12 t + 12 ) 3 d t = 3 98 ( 169 42 tan 1 ( 6 7 ) 42 ) 23.7562372205 \begin{aligned} A' & = 2 \int_0^\frac {36}7 x \ \ce dy \\ & = 2 \int_0^\frac {36}7 \frac {12(6+5t-6t^1)}{17t^2+12t+12}\ \ce d \left(\frac {6(12t+5t^2)}{17t^2+12t+12} \right) \\ & = 3456 \int_0^\frac 32 \frac {(6+5t-6t^1)^2}{(17t^2+12t+12)^3}\ \ce d t \\ & = \frac 3{98} \left(169\sqrt{42} \tan^{-1} \left(\sqrt{\frac 67} \right) -42 \right) \\ & \approx 23.7562372205 \end{aligned}

Therefore the area bounded by the two loci A + A 35.9539200076 36 A+A' \approx 35.9539200076 \approx 36 . And the required answer is 6 \boxed 6 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...