Dynamic Geometry: P114

Geometry Level pending

The diagram shows a black circle. A horizontal yellow chord is drawn creating two circular segments, their respective heights are 4 4 and 9 9 . In each circular segment, we inscribe a triangle. In both triangles we inscribe the largest rectangle possible. The triangles are both evolving so that the orange point and the purple point are moving at the same horizontal rate. When the ratio of the green triangle's perimeter to the perimeter of the cyan triangle is equal to 483 380 \dfrac{483}{380} , the ratio of the red rectangle's area to the area of the blue rectangle can be expressed as p q \dfrac{p}{q} , where p p and q q are coprime positive integers. Find q p \sqrt{q-p} .


The answer is 29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 20, 2021

Let the dividing yellow chord be A B AB , the upper and lower moving points on the circumference be C C and C C' respectively, and C A B = θ \angle CAB = \theta . From the compiled calculations in Dynamic Geometry: P96 Series , we have A N = 12 AN = 12 , A C B = π tan 1 12 5 \angle ACB = \pi - \tan^{-1} \frac {12}5 and A C B = tan 1 12 5 \angle AC'B = \tan^{-1} \frac {12}5 . By sine rule :

B C A B = sin C A B sin A C B B C = 12 sin θ 12 13 = 13 sin θ \frac {BC}{AB} = \frac {\sin \angle CAB}{\sin \angle ACB} \implies BC = \frac {12\sin \theta}{\frac {12}{13}} = 13\sin \theta

Similarly,

A C = 13 sin ( tan 1 12 5 θ ) = 12 cos θ 5 sin θ A C = 13 sin ( π 2 θ ) = 13 cos θ B C = 13 sin ( π 2 tan 1 12 5 + θ ) = 5 cos θ + 12 sin θ \begin{aligned} AC & = 13 \sin \left(\tan^{-1} \frac {12}5 - \theta \right) = 12 \cos \theta - 5 \sin \theta \\ AC' & = 13 \sin \left(\frac \pi 2- \theta \right) = 13 \cos \theta \\ BC' & = 13 \sin \left(\frac \pi 2 - \tan^{-1} \frac {12}5 + \theta \right) = 5 \cos \theta + 12 \sin \theta \end{aligned}

Then the perimeter of A B C \triangle ABC , p = 8 sin θ + 12 cos θ + 12 p = 8 \sin \theta + 12 \cos \theta + 12 and that of A B C \triangle ABC' , p = 12 sin θ + 18 cos θ + 12 p' = 12 \sin \theta + 18 \cos \theta + 12 . When p p = 483 380 \dfrac {p'}p = \dfrac {483}{380} ,

12 sin θ + 18 cos θ + 12 8 sin θ + 12 cos θ + 12 = 483 380 2 sin θ + 3 cos θ + 2 2 sin θ + 3 cos θ + 3 = 161 190 1 1 2 sin θ + 3 cos θ + 3 = 161 190 2 sin θ + 3 cos θ = 103 29 13 sin ( θ + tan 1 3 2 ) = 103 29 tan ( θ + tan 1 3 2 ) = 103 18 tan θ + 3 2 1 3 2 tan θ = 103 18 345 tan θ = 152 θ = tan 1 152 345 \begin{aligned} \frac {12 \sin \theta + 18 \cos \theta + 12}{8 \sin \theta + 12 \cos \theta + 12} & = \frac {483}{380} \\ \frac {2 \sin \theta + 3 \cos \theta + 2}{2 \sin \theta + 3 \cos \theta + 3} & = \frac {161}{190} \\ 1 - \frac 1{2 \sin \theta + 3 \cos \theta + 3} & = \frac {161}{190} \\ 2 \sin \theta + 3 \cos \theta & = \frac {103}{29} \\ \sqrt{13} \sin \left(\theta + \tan^{-1} \frac 32 \right) & = \frac {103}{29} \\ \tan \left(\theta + \tan^{-1} \frac 32 \right) & = \frac {103}{18} \\ \frac {\tan \theta + \frac 32}{1-\frac 32 \tan \theta} & = \frac {103}{18} \\ 345 \tan \theta & = 152 \\ \implies \theta & = \tan^{-1} \frac {152}{345} \end{aligned}

From the compilation of calculations, we know that the largest rectangle inscribed by a triangle has a half of the height and a half of the width the triangle. Since the upper and lower rectangles have the same width of 6 6 the area of the rectangles are directly proportional to their heights. Then we have:

A r e d A b l u e = A C sin θ A C sin ( π 2 tan 1 12 5 + θ ) = tan θ tan ( tan 1 12 5 θ ) = 152 345 12 5 152 345 1 + 12 5 152 345 = 608 1449 \begin{aligned} \frac {A_\red{\rm red}}{A_\blue{\rm blue}} & = \frac {AC \cdot \sin \theta}{AC' \cdot \sin \left(\frac \pi 2 - \tan^{-1} \frac {12}5 + \theta \right)} \\ & = \tan \theta \tan \left(\tan^{-1} \frac {12}5 - \theta \right) \\ & = \frac {152}{345} \cdot \frac {\frac {12}5 - \frac {152}{345}}{1+\frac {12}5 \cdot \frac {152}{345}} \\ & = \frac {608}{1449} \end{aligned}

Therefore q p = 1449 608 = 841 = 29 \sqrt{q-p} = \sqrt{1449-608} = \sqrt{841} = \boxed{29} .

Thank you for posting !

Valentin Duringer - 1 month, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...