Dynamic Geometry: P128

Geometry Level 4

The diagram shows a black circle. A horizontal black chord is drawn creating two circular segments, their respective heights are 4 4 and 9 9 . In each circular segment, we inscribe a triangle. In both triangles we draw the incircle. The apex of the triangles need to be diametrically opposed. When the ratio of the blue incircle's radius to the radius of the red incircle is equal to 9 16 \dfrac{9}{16} , the ratio of the upper triangle's area to the area of the lower triangle can be expressed as p q \dfrac{p}{q} . Find p + q p+q .


The answer is 323.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

From the compiled calculations in Dynamic Geometry: P96 Series , we know that the radius of the large circle is 6.5 6.5 , the dividing chord A B = 12 AB=12 , A C B = π tan 1 12 5 \angle ACB = \pi - \tan^{-1} \frac {12}5 , and A C B = tan 1 12 5 \angle AC'B = \tan^{-1} \frac {12}5 .

Let the center of the large circle O O be the origin of the x y xy -plane. Then C = ( 6.5 cos θ , 6.5 sin θ ) C=(6.5\cos \theta, 6.5 \sin \theta) and C = ( 6.5 cos θ , 6.5 sin θ ) C'=(-6.5\cos \theta, -6.5 \sin \theta) , where θ \theta is the angle C C CC' makes with the x x -axis. The inradius of A B C \triangle ABC is r = A s r = \dfrac As , where A A and s s are the area and semiperimeter or A B C \triangle ABC respectively, then:

r = A B C D C A + B C + A B where C D is the height of A B C = 12 ( 6.5 sin θ 2.5 ) ( 6.5 cos θ + 6 ) 2 + ( 6.5 sin θ 2.5 ) 2 + ( 6.5 cos θ 6 ) 2 + ( 6.5 sin θ 2.5 ) 2 + 12 = 78 sin θ 30 32.5 sin θ + 78 cos θ + 84.5 + 32.5 sin θ 78 cos θ + 84.5 + 12 \begin{aligned} r & = \frac {AB \cdot \blue{CD}}{CA+BC+AB} \qquad \qquad \small \blue{\text{where }CD \text{ is the height of }\triangle ABC} \\ & = \frac {12(6.5\sin \theta - 2.5)}{\sqrt{(6.5\cos \theta +6)^2+(6.5\sin \theta -2.5)^2} + \sqrt{(6.5\cos \theta -6)^2+(6.5\sin \theta -2.5)^2} + 12} \\ & = \frac {78\sin \theta - 30}{\sqrt{-32.5\sin \theta + 78\cos \theta +84.5} + \sqrt{-32.5\sin \theta - 78\cos \theta +84.5} + 12} \end{aligned}

Similarly for A B C \triangle ABC' :

r = 78 sin θ + 30 32.5 sin θ + 78 cos θ + 84.5 + 32.5 sin θ 78 cos θ + 84.5 + 12 \begin{aligned} r' & = \frac {78\sin \theta + 30}{\sqrt{32.5\sin \theta + 78\cos \theta +84.5} + \sqrt{32.5\sin \theta - 78\cos \theta +84.5} + 12} \end{aligned}

When r r = 9 16 \dfrac r{r'} = \dfrac 9{16} ,

( 78 sin θ 30 ) ( 32.5 sin θ + 78 cos θ + 84.5 + 32.5 sin θ 78 cos θ + 84.5 + 12 ) ( 78 sin θ + 30 ) ( 32.5 sin θ + 78 cos θ + 84.5 + 32.5 sin θ 78 cos θ + 84.5 + 12 ) = 9 16 \implies \frac {(78\sin \theta - 30)(\sqrt{32.5\sin \theta + 78\cos \theta +84.5} + \sqrt{32.5\sin \theta - 78\cos \theta +84.5} + 12)}{(78\sin \theta + 30)(\sqrt{-32.5\sin \theta + 78\cos \theta +84.5} + \sqrt{-32.5\sin \theta - 78\cos \theta +84.5} + 12)} = \frac 9{16}

Solving the equation above, we have θ = sin 1 323 325 \theta = \sin^{-1} \dfrac {323}{325} . Since the upper and lower triangles have the same base A B AB , their area is proportional to their height. Then we have:

A A = h h = 6.5 sin θ 2.5 6.5 sin θ + 2.5 = 323 125 323 + 125 = 198 448 = 99 224 \frac A{A'} = \frac h{h'} = \frac {6.5\sin \theta -2.5}{6.5\sin \theta + 2.5} = \frac {323-125}{323+125} = \frac {198}{448} = \frac {99}{224}

Therefore p + q = 99 + 224 = 323 p+q = 99+224 = \boxed{323} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...