Dynamic Geometry: P129

Geometry Level pending

The diagram shows a black circle. A horizontal black chord is drawn creating two circular segments, their respective heights are 4 4 and 9 9 . In each circular segment, we inscribe a triangle. In both triangles we draw the incircle. The apex of the triangles need to move at the same constant horizontal rate. When the ratio of the blue incircle's radius to the radius of the red incircle is equal to 21 40 \dfrac{21}{40} , the ratio of the upper triangle's area to the area of the lower triangle can be expressed as p q \dfrac{p}{q} . Find q p \sqrt{q-p} .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let the center of the large circle O O be the origin of the x y xy -plane. Then C = ( 6.5 cos θ , 6.5 sin θ ) C=(6.5\cos \theta, 6.5 \sin \theta) and C = ( 6.5 cos θ , 6.5 sin θ ) C'=(6.5\cos \theta, -6.5 \sin \theta) , where θ \theta is the angle C O CO and C O C'O make with the x x -axis. From the previous problem Dynamic Geometry: P128 , the inradius of A B C \triangle ABC is given by:

r = 78 sin θ 30 32.5 sin θ + 78 cos θ + 84.5 + 32.5 sin θ 78 cos θ + 84.5 + 12 \begin{aligned} r & = \frac {78\sin \theta - 30}{\sqrt{-32.5\sin \theta + 78\cos \theta +84.5} + \sqrt{-32.5\sin \theta - 78\cos \theta +84.5} + 12} \end{aligned}

Similarly for A B C \triangle ABC' :

r = 78 sin θ + 30 32.5 sin θ + 78 cos θ + 84.5 + 32.5 sin θ 78 cos θ + 84.5 + 12 \begin{aligned} r' & = \frac {78\sin \theta + 30}{\sqrt{32.5\sin \theta + 78\cos \theta +84.5} + \sqrt{32.5\sin \theta - 78\cos \theta +84.5} + 12} \end{aligned}

When r r = 21 40 \dfrac r{r'} = \dfrac {21}{40} ,

( 78 sin θ 30 ) ( 32.5 sin θ + 78 cos θ + 84.5 + 32.5 sin θ 78 cos θ + 84.5 + 12 ) ( 78 sin θ + 30 ) ( 32.5 sin θ + 78 cos θ + 84.5 + 32.5 sin θ 78 cos θ + 84.5 + 12 ) = 21 40 \implies \frac {(78\sin \theta - 30)(\sqrt{32.5\sin \theta + 78\cos \theta +84.5} + \sqrt{32.5\sin \theta - 78\cos \theta +84.5} + 12)}{(78\sin \theta + 30)(\sqrt{-32.5\sin \theta + 78\cos \theta +84.5} + \sqrt{-32.5\sin \theta - 78\cos \theta +84.5} + 12)} = \frac {21}{40}

Solving the equation above, we have θ = sin 1 2035 2197 \theta = \sin^{-1} \dfrac {2035}{2197} . Since the upper and lower triangles have the same base A B AB , their area is proportional to their height. Then we have:

A A = h h = 6.5 sin θ 2.5 6.5 sin θ + 2.5 = 2035 845 2035 + 845 = 1190 2880 = 119 288 \frac A{A'} = \frac h{h'} = \frac {6.5\sin \theta -2.5}{6.5\sin \theta + 2.5} = \frac {2035-845}{2035+845} = \frac {1190}{2880} = \frac {119}{288}

Therefore q p = 288 119 = 169 = 13 \sqrt{q-p} = \sqrt{288-119} = \sqrt{169} = \boxed{13} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...