Dynamic Geometry: P131

Geometry Level pending

The diagram shows a black circle with radius one. A purple diameter is drawn. The blue point travels freely on the circle, which allows us to draw a purple triangle. The cyan square is inscribed in the triangle so it is tangent to the hypotenuse. The left side angle and right side angle of the purple triangle are α \alpha and β \beta . When the area of the cyan square is equal to 400 1421 \dfrac{400}{1421} , the expression tan ( α ) + tan ( β ) \tan \left(\alpha \right)+\tan \left(\beta \right) can be expressed as p q \dfrac{p}{q} , where p p and q q are coprime positive integers. Find p + q p+q .


The answer is 39.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 11, 2021

Let the diameter of the circle be A B AB , the moving triangle vertex be C C , the square vertex on A B AB be D D , and the side length of the square be a a . Then

A D + D B = A B a csc α + a sec α = 2 a = 2 csc α + sec α = 2 sin α cos α sin α + cos α = sin 2 α sin α + cos α \begin{aligned} AD + DB & = AB \\ a \csc \alpha + a \sec \alpha & = 2 \\ \implies a & = \frac 2{\csc \alpha + \sec \alpha} = \frac {2\sin \alpha \cos \alpha}{\sin \alpha + \cos \alpha} = \frac {\sin 2\alpha}{\sin \alpha + \cos \alpha} \end{aligned}

When the area of the square,

a 2 = 400 1421 sin 2 2 α ( sin α + cos α ) 2 = 400 1421 sin 2 2 α sin 2 α + 1 = 400 1421 1421 sin 2 2 α 400 sin 2 α 400 = 0 ( 29 sin 2 α 20 ) ( 49 sin 2 α + 20 ) = 0 Since α is acute, sin 2 α = 20 29 2 tan α 1 + tan 2 α = 20 29 1 cot α + tan α = 10 29 1 tan ( 9 0 α ) + tan α = 10 29 Note that β = 9 0 α tan α + tan β = 29 10 \begin{aligned} a^2 & = \frac {400}{1421} \\ \frac {\sin^2 2\alpha}{(\sin \alpha + \cos \alpha)^2} & = \frac {400}{1421} \\ \frac {\sin^2 2\alpha}{\sin 2 \alpha + 1} & = \frac {400}{1421} \\ 1421 \sin^2 2\alpha - 400 \sin 2 \alpha - 400 & = 0 \\ (29 \sin 2 \alpha - 20)(49 \sin 2 \alpha + 20) & = 0 & \small \blue{\text{Since }\alpha \text{ is acute,}} \\ \sin 2 \alpha & = \frac {20}{29} \\ \frac {2\tan \alpha}{1 + \tan^2 \alpha} & = \frac {20}{29} \\ \frac 1{\cot \alpha + \tan \alpha} & = \frac {10}{29} \\ \frac 1{\tan (\blue{90^\circ - \alpha}) + \tan \alpha} & = \frac {10}{29} & \small \blue{\text{Note that }\beta = 90^\circ - \alpha} \\ \implies \tan \alpha + \tan \blue \beta & = \frac {29}{10} \end{aligned}

Therefore p + q = 10 + 29 = 39 p+q = 10 + 29 = \boxed{39} .

Very easy indeed aha

Valentin Duringer - 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...