The diagram shows a black semicircle with radius
. The cyan and green semicircles are tangent to each other and internally tangent to the black semicircle. They are growing and shrinking freely so that the sum of their radius is always equal to the black semicircle's radius. We draw a red vertical segment using their tangency point. At last we inscribed two yellow circles so they are tangent to the red line, to the black semicircle and to one of the two bottom semicircles. Using the tagency points, we draw a purple triangle and a blue triangle. We draw the Euler line of each triangle. When the Euler line are perpendicular, the radius of one yellow circle can be expressed as:
where , , and are relatively coprime positive integers. is square-free. Find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let the radius of the cyan and green semicircles be r 1 and r 2 respectively. From the compilation of calculations in Dynamic Geometry: P32 Series , we find that r 1 + r 2 = 1 and the radii of the two circles are always the same and it is r = r 1 r 2 . If the center O of the unit semicircle is the origin ( 0 , 0 ) of the x y -plane, the coordinates of the centers and the two circles and the vertices of the triangles they inscribe are:
⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ S ( r 1 2 − r 2 , 2 r 1 r 2 ) , S 1 ( 1 + r 2 r 1 − 2 r 2 , 1 + r 2 2 r 1 r 2 ) , S 2 ( r 1 − r 2 , 2 r 1 r 2 ) , S 3 ( 1 − r 1 r 2 r 1 2 − r 2 , 1 − r 1 r 2 2 r 1 r 2 ) , T ( r 1 − r 2 2 , 2 r 2 r 1 ) T 1 ( 1 + r 1 2 r 1 − r 2 , 1 + r 1 2 r 2 r 1 ) T 2 ( r 1 − r 2 , 2 r 2 r 1 ) T 3 ( 1 − r 1 r 2 r 1 − r 2 2 , 1 − r 1 r 2 2 r 2 r 1 )
Then the centroids of the two triangles are:
⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ G s = ( 3 1 ( 1 + r 2 r 1 − 2 r 2 + r 1 − r 2 + 1 − r 1 r 2 r 1 2 − r 2 ) , 3 2 r 1 r 2 ( 1 + r 2 1 + 1 + 1 − r 1 r 2 1 ) ) G t = ( 3 1 ( 1 + r 1 2 r 1 − r 2 + r 1 − r 2 + 1 − r 1 r 2 r 1 − r 2 2 ) , 3 2 r 2 r 1 ( 1 + r 1 1 + 1 + 1 − r 1 r 2 1 ) )
As Euler line passes through the centroid and circumcenter, the equations of the two Euler lines are:
⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ S G s : S G t : x − r 1 2 + r 2 y − 2 r 1 r 2 = 3 1 ( 1 + r 2 r 1 − 2 r 2 + r 1 − r 2 + 1 − r 1 r 2 r 1 2 − r 2 ) − r 1 2 + r 2 3 2 r 1 r 2 ( 1 + r 2 1 + 1 + 1 − r 1 r 2 1 ) − 2 r 1 r 2 x − r 1 + r 2 2 y − 2 r 2 r 1 = 3 1 ( 1 + r 1 2 r 1 − r 2 + r 1 − r 2 + 1 − r 1 r 2 r 1 − r 2 2 ) − r 1 + r 2 2 3 2 r 2 r 1 ( 1 + r 1 1 + 1 + 1 − r 1 r 2 1 ) − 2 r 2 r 1 ⟹ ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ S G s : S G t : x − r 1 2 + r 2 y − 2 r 1 r 2 = 1 + r 2 r 1 − 2 r 2 + r 1 + 2 r 2 − 3 r 1 2 + 1 − r 1 r 2 r 1 2 − r 2 2 r 1 r 2 ( 1 + r 2 1 − 2 + 1 − r 1 r 2 1 ) x − r 1 + r 2 2 y − 2 r 2 r 1 = 1 + r 1 2 r 1 − r 2 − 2 r 1 − r 2 + 3 r 2 2 + 1 − r 1 r 2 r 1 − r 2 2 2 r 2 r 1 ( 1 + r 1 1 − 2 + 1 − r 1 r 2 1 )
Note that the right-hand sides of the equations are the gradient of the respectively Euler lines. When the Euler lines are perpendicular, we have:
1 + r 2 r 1 − 2 r 2 + r 1 + 2 r 2 − 3 r 1 2 + 1 − r 1 r 2 r 1 2 − r 2 2 r 1 r 2 ( 1 + r 2 1 − 2 + 1 − r 1 r 2 1 ) ⋅ 1 + r 1 2 r 1 − r 2 − 2 r 1 − r 2 + 3 r 2 2 + 1 − r 1 r 2 r 1 − r 2 2 2 r 2 r 1 ( 1 + r 1 1 − 2 + 1 − r 1 r 2 1 ) = − 1
With the intuition that the equation above can be written to involve only r , coupled with determination and hard work, it beautifully reduced to:
1 − 4 r − 9 r 2 4 r ( 4 r − 1 ) 4 r ( 4 r − 1 ) = 9 r 2 + 4 r − 1 2 5 6 r 3 − 1 2 8 r 2 + 1 6 r 8 1 r 4 − 1 8 4 r 3 + 1 2 6 r 2 − 2 4 r + 1 ( r − 1 ) 2 ( 8 1 r 2 − 2 2 r + 1 ) ⟹ r = − 1 = 8 1 r 4 + 7 2 r 3 − 2 r 2 − 8 r + 1 = 0 = 0 = 8 1 1 1 − 2 1 0 Since r < 1 and 8 1 1 1 + 2 1 0 is not a solution of 1 − 4 r − 9 r 2 4 r ( 4 r − 1 ) = − 1 .
Therefore p + q + m + l = 1 1 + 2 + 1 0 + 8 1 = 1 0 4 .