Dynamic Geometry :P17

Geometry Level 5

in the diagram, the triangle has a base of length 4 4 , an angle (black) measuring tan 1 3 4 \tan^{-1} \frac 34 , and a variable angle (orange) ( 9 0 \le 90^\circ ). When the ratio of the radius of the incircle (green) to the radius of the circumcircle (blue) of the triangle is maximum , the area of the triangle can be expressed as a b , \dfrac ab, where a a and b b are coprime positive integers. Find a + b a+b .


The answer is 29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Label the triangle A B C ABC . Let the variable A = θ \angle A = \theta (orange), the B = ϕ \angle B = \phi (black), the height of the triangle be h h , and the inradius and circumradius of the triangle be r r and R R . Then the inradius r r is given by:

r cot θ 2 + r cot ϕ 2 = 4 Let tan θ 2 = t r t + 3 r = 4 Note that tan ϕ 2 = 1 cos ϕ sin ϕ = 1 3 r = 4 1 t + 3 = 4 t 1 + 3 t \begin{aligned} r \cot \frac \theta 2 + r \cot \frac \phi 2 & = 4 & \small \blue{\text{Let }\tan \frac \theta 2 = t} \\ \frac rt + 3 r & = 4 & \small \blue{\text{Note that }\tan \frac \phi 2 = \frac {1-\cos \phi}{\sin \phi} = \frac 13} \\ \implies r & = \frac 4{\frac 1t + 3} = \frac {4t}{1+3t} \end{aligned}

The height of triangle:

h cot θ + h cot ϕ = 4 h = 4 cot θ + cot ϕ = 4 1 t 2 2 t + 4 3 = 24 t 3 + 8 t 3 t 2 = 24 t ( 3 t ) ( 1 + 3 t ) \begin{aligned} h \cot \theta + h \cot \phi & = 4 \\ \implies h & = \frac 4{\cot \theta + \cot \phi} = \frac 4{\frac {1-t^2}{2t} + \frac 43} = \frac {24t}{3+8t-3t^2} = \frac {24t}{(3-t)(1+3t)} \end{aligned}

The circumradius is 2 R = C A sin ϕ R = 5 h 6 sin θ 2R = \dfrac {CA}{\sin \phi} \implies R = \dfrac {5h}{6\sin \theta} . Then the ratio of radii:

r R = 4 t 1 + 3 t 6 sin θ 5 h = 4 t 1 + 3 t 12 t 1 + t 2 ( 3 t ) ( 1 + 3 t ) 5 24 t = 2 t ( 3 t ) 5 ( 1 + t 2 ) d d t ( r R ) = 2 ( ( 3 2 t ) ( 1 + t 2 ) ( 3 t t 2 ) ( 2 t ) ) 5 ( 1 + t 2 ) 2 = 2 ( 3 2 t 3 t 2 ) 5 ( 1 + t 2 ) \begin{aligned} \frac rR & = \frac {4t}{1+3t} \cdot \frac {6\sin \theta}{5h} = \frac {4t}{1+3t} \cdot \frac {12t}{1+t^2} \cdot \frac {(3-t)(1+3t)}{5\cdot 24t} = \frac {2t(3-t)}{5(1+t^2)} \\ \frac d{dt} \left(\frac rR\right) & = \frac {2\left((3-2t)(1+t^2)-(3t-t^2)(2t)\right)}{5(1+t^2)^2} = \frac {2(3-2t-3t^2)}{5(1+t^2)} \end{aligned}

Therefore r R \dfrac rR is maximum, when 3 2 t 3 t 2 = 0 3-2t-3t^2 = 0 , because d 2 d t 2 ( r R ) < 0 \dfrac {d^2}{dt^2} \left(\dfrac rR\right) < 0 . when 3 2 t 3 t 2 = 0 3-2t-3t^2 = 0 . Then the area of the triangle:

A = 4 h 2 = 2 h = 2 24 t 3 + 8 t 3 t 2 = 2 24 t 3 2 t 3 t 2 0 + 10 t = 24 5 \begin{aligned} A_\triangle & = \dfrac {4h}2 = 2h = \frac {2 \cdot 24t}{3+8t-3t^2} = \frac {2 \cdot 24t}{\blue{\cancel{3-2t-3t^2}^0} + 10t} = \frac {24}5 \end{aligned}

Therefore a + b = 24 + 5 = 29 a+b = 24+5 = \boxed{29} .

@Valentin Duringer , a nice problem. The preposition for "ratio" is "to" and not "between". Use "find" instead of "evaluate".

Chew-Seong Cheong - 4 months, 1 week ago

Sorry old reflexes !!

Valentin Duringer - 4 months, 1 week ago

Log in to reply

You have used "If". It should be "When". Your original words "At the precise moment" can actually be replaced by "When".

Chew-Seong Cheong - 4 months ago

Log in to reply

Ok I understand thank you !

Valentin Duringer - 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...