Dynamic Geometry: P21

Geometry Level 5

The diagram shows a blue semicircle with radius 1 1 . A point is moving freely on the semicircle so we can draw a green triangle. We draw its incircle and the biggest circles possible in the two created circular segments. We draw a black triangle using the center of each circle. When the three circles's areas are in geometric progression, the area of the black triangle can be expressed as a b \dfrac{a}{b} , where a a and b b are coprime positive integers. Find a + b a+b .


The answer is 111.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Label the triangle A B C ABC , the center of the semicircle O O , the tangent points of the purple and red circles to the semicircle as D D and E E respectively. Let the centers and radii of the cyan, purple, and red circles be P P , Q Q , and R R , and r 1 r_1 , r 2 r_2 , and r 3 r_3 respectively, and C A B = θ \angle CAB = \theta . Note that A C B = 9 0 \angle ACB = 90^\circ , and C B A = 9 0 θ \angle CBA = 90^\circ - \theta . Then

r 1 cot C A B 2 + r 1 cot C B A 2 = A B r 1 cot θ 2 + r 1 cot ( 4 5 θ 2 ) = 2 Let t = tan θ 2 r 1 t + 1 + t 1 t r 1 = 2 r 1 = 2 1 t + 1 + t 1 t = 2 t ( 1 t ) 1 + t 2 \begin{aligned} r_1 \cot \frac {\angle CAB}2 + r_1 \cot \frac {\angle CBA}2 & = AB \\ r_1 \cot \frac \theta 2 + r_1 \cot \left(45^\circ - \frac \theta 2\right) & = 2 & \small \blue{\text{Let }t = \tan \frac \theta 2} \\ \frac {r_1}t + \frac {1+t}{1-t}r_1 & = 2 \\ \implies r_1 & = \frac 2{\frac 1t + \frac {1+t}{1-t}} = \frac {2t(1-t)}{1+t^2} \end{aligned}

Note that O O , Q Q , and D D are colinear, C O B = 2 θ \angle COB = 2\theta , and D O B = θ \angle DOB = \theta . Then

O D = O B cos D O B + 2 r 2 1 = cos θ + 2 r 2 r 2 = 1 cos θ 2 = 1 1 t 2 1 + t 2 2 = t 2 1 + t 2 \begin{aligned} OD & = OB \cos \angle DOB + 2r_2 \\ 1 & = \cos \theta + 2r_2 \\ \implies r_2 & = \frac {1-\cos \theta}2 = \frac {1-\frac {1-t^2}{1+t^2}}2 = \frac {t^2}{1+t^2} \end{aligned}

Similarly,

r 3 = 1 sin θ 2 = 1 2 t 1 + t 2 2 = ( 1 t ) 2 2 ( 1 + t 2 ) \begin{aligned} r_3 & = \frac {1-\sin \theta}2 = \frac {1-\frac {2t}{1+t^2}}2 = \frac {(1-t)^2}{2(1+t^2)} \end{aligned}

The areas of the three circles are in a geometric progression, means that r 1 2 r_1^2 , r 2 2 r_2^2 , and r 3 2 r_3^2 are in a geometric progression. Since r 2 r_2 and r 3 r_3 are replaceable, and are not independent, we assume either r 2 2 r_2^2 or r 3 2 r_3^2 as the middle term of the geometric progression. Let us assume:

r 1 2 r 2 2 = r 3 4 r 1 r 2 = r 3 2 2 t 3 ( 1 t ) ( 1 + t 2 ) 2 = ( 1 t ) 4 4 ( 1 + t 2 ) 2 8 t 3 = ( 1 t ) 3 2 t = 1 t t = 1 3 \begin{aligned} r_1^2r_2^2 & = r_3^4 \\ r_1r_2 & = r_3^2 \\ \frac {2t^3(1-t)}{(1+t^2)^2} & = \frac {(1-t)^4}{4(1+t^2)^2} \\ 8t^3 & = (1-t)^3 \\ 2t & = 1-t \\ \implies t & = \frac 13 \end{aligned}

Then r 1 = 2 5 r_1 = \dfrac 25 , r 2 = 1 10 r_2 = \dfrac 1{10} , and r 3 = 1 5 r_3 = \dfrac 15 . Let O O be the origin ( 0 , 0 ) (0,0) of the x y xy -plane. Then the coordinates of P P , Q Q , and R R :

P = ( r 1 t 1 , r 1 ) = ( 0.2 , 0.4 ) Q = ( ( 1 r 2 ) cos θ , ( 1 r 2 ) sin θ ) = ( ( 1 r 2 ) 1 t 2 1 + t 2 , ( 1 r 2 ) 2 t 1 + t 2 ) = ( 0.72 , 0.54 ) R = ( ( 1 r 3 ) sin θ , ( 1 r 3 ) cos θ ) = ( ( 1 r 3 ) 2 t 1 + t 2 , ( 1 r 3 ) 1 t 2 1 + t 2 ) = ( 0.48 , 0.64 ) \begin{aligned} P & = \left(\frac {r_1}t-1, r_1 \right) = (0.2, 0.4) \\ Q & = \left((1-r_2)\cos \theta, (1-r_2)\sin \theta \right) = \left((1-r_2)\frac {1-t^2}{1+t^2}, (1-r_2)\frac {2t}{1+t^2} \right) = (0.72, 0.54) \\ R & = \left(-(1-r_3)\sin \theta, (1-r_3)\cos \theta \right) = \left(-(1-r_3)\frac {2t}{1+t^2}, (1-r_3)\frac {1-t^2}{1+t^2} \right) = (-0.48, 0.64) \end{aligned}

The area of P Q R \triangle PQR ,

[ P Q R ] = ( 0.72 + 0.48 ) 0.54 + 0.64 2 ( 0.2 + 0.48 ) 0.4 + 0.64 2 ( 0.72 0.2 ) 0.54 + 0.4 2 = 11 100 [PQR] = (0.72+0.48)\frac {0.54+0.64}2 - (0.2+0.48)\frac {0.4+0.64}2 - (0.72-0.2) \frac {0.54+0.4}2 = \frac {11}{100}

Therefore a + b = 11 + 100 = 111 a+b = 11+100 = \boxed{111} .

Thank you for posting !

Valentin Duringer - 4 months ago
David Vreken
Feb 9, 2021

Label the diagram as follows, and let p = A G = G C = O H p = AG = GC = OH :

Then by the Pythagorean Theorem on O H B \triangle OHB , B E = 1 p 2 = E C = G O BE = \sqrt{1 - p^2} = EC = GO .

The diameter of the red circle is then I G = I O G O = 1 1 p 2 IG = IO - GO = 1 - \sqrt{1 - p^2} , and its radius is r r = 1 2 ( 1 1 p 2 ) r_r = \frac{1}{2}(1 - \sqrt{1 - p^2}) .

Likewise, the diameter of the purple circle is J H = O J H J = 1 p JH = OJ - HJ = 1 - p , and its radius is r p = 1 2 ( 1 p ) r_p = \frac{1}{2}(1 - p) .

The radius of the cyan circle is r c = 1 2 ( A C + B C A C ) = 1 2 ( 2 p + 2 1 p 2 2 ) = p + 1 p 2 + 1 r_c = \frac{1}{2}(AC + BC - AC) = \frac{1}{2}(2p + 2\sqrt{1 - p^2 - 2}) = p + \sqrt{1 - p^2} + 1 .

For the circles' areas to be in a geometric progression, either π r p 2 π r c 2 = ( π r r 2 ) 2 \pi r_p^2 \cdot \pi r_c^2 = (\pi r_r^2)^2 (which after substituting the above radii equations solves to p = 4 5 p = \frac{4}{5} and 1 p 2 = 3 5 \sqrt{1 - p^2} = \frac{3}{5} ), or π r r 2 π r c 2 = ( π r p 2 ) 2 \pi r_r^2 \cdot \pi r_c^2 = (\pi r_p^2)^2 (which solves to p = 4 5 p = \frac{4}{5} and 1 p 2 = 3 5 \sqrt{1 - p^2} = \frac{3}{5} ), or π r r 2 π r p 2 = ( π r c 2 ) 2 \pi r_r^2 \cdot \pi r_p^2 = (\pi r_c^2)^2 (which can be rejected because it solves to p = 0 p = 0 or p = 1 p = 1 , a degenerate triangle).

Without loss of generality, let p = 4 5 p = \frac{4}{5} and 1 p 2 = 3 5 \sqrt{1 - p^2} = \frac{3}{5} . Then r r = 1 2 ( 1 1 p 2 ) = 1 5 r_r = \frac{1}{2}(1 - \sqrt{1 - p^2}) = \frac{1}{5} , r p = 1 2 ( 1 p ) = 1 10 r_p = \frac{1}{2}(1 - p) = \frac{1}{10} , and r c = p + 1 p 2 + 1 = 2 5 r_c = p + \sqrt{1 - p^2} + 1 = \frac{2}{5} .

Also, D O = D G + G O = 1 5 + 3 5 = 4 5 DO = DG + GO = \frac{1}{5} + \frac{3}{5} = \frac{4}{5} and E O = O H + H E = 4 5 + 1 10 = 9 10 EO = OH + HE= \frac{4}{5} + \frac{1}{10} = \frac{9}{10} .

The height of D O F \triangle DOF with base D O DO is h D O F = O J 2 r p r c = 1 2 1 10 2 5 = 2 5 h_{\triangle DOF} = OJ - 2r_p - r_c = 1 - 2 \cdot \frac{1}{10} - \frac{2}{5} = \frac{2}{5} .

The height of E O F \triangle EOF with base E O EO is h E O F = O I 2 r r r c = 1 2 1 5 2 5 = 1 5 h_{\triangle EOF} = OI - 2r_r - r_c = 1 - 2 \cdot \frac{1}{5} - \frac{2}{5} = \frac{1}{5} .

The area of D O F \triangle DOF is then A D O F = 1 2 D O h D O F = 1 2 4 5 2 5 = 4 25 A_{\triangle DOF} = \frac{1}{2} \cdot DO \cdot h_{\triangle DOF} = \frac{1}{2} \cdot \frac{4}{5} \cdot \frac{2}{5} = \frac{4}{25} .

The area of E O F \triangle EOF is then A E O F = 1 2 E O h E O F = 1 2 9 10 1 5 = 9 100 A_{\triangle EOF} = \frac{1}{2} \cdot EO \cdot h_{\triangle EOF} = \frac{1}{2} \cdot \frac{9}{10} \cdot \frac{1}{5} = \frac{9}{100} .

The area of D O E \triangle DOE is then A D O E = 1 2 D O E O = 1 2 4 5 9 10 = 9 25 A_{\triangle DOE} = \frac{1}{2} \cdot DO \cdot EO = \frac{1}{2} \cdot \frac{4}{5} \cdot \frac{9}{10} = \frac{9}{25} .

Finally, the area of D F E \triangle DFE is A D F E = A D O E A D O F A E O F = 9 25 4 25 9 100 = 11 100 A_{\triangle DFE} = A_{\triangle DOE} - A_{\triangle DOF} - A_{\triangle EOF} = \frac{9}{25} - \frac{4}{25} - \frac{9}{100} = \frac{11}{100} .

Therefore, a = 11 a = 11 , b = 100 b = 100 , and a + b = 111 a + b = \boxed{111} .

Nice solution David !

Valentin Duringer - 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...