Dynamic Geometry: P39

Geometry Level pending

The diagram shows a cyan circular sector with radius 1 1 . Its angle varies between 0 ° and 180 ° 180° . The pink circle is the largest circle we can inscribed inside the circular sector. When the ratio of the x x coordinate to the y y coordinate of the pink circle's center (green) is equal to 24 7 \dfrac{24}{7} , the distance between the green point and the origin (red point) can be expressed as a b \dfrac{a}{b} where a a and b b are coprime positive integers. Find a 2 b 5 \sqrt[2]{a}-\sqrt[5]{b} .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sathvik Acharya
Feb 16, 2021

Define the center of the circular sector as O ( 0 , 0 ) O(0,0) and center of the pink circle as P ( 24 r 7 , r ) P \left (\dfrac{24r}{7},r \right) , which implies that the radius of the circle is r . r.

In right-triangle O D P ODP , O D 2 + P D 2 = O P 2 ( 24 r 7 ) 2 + r 2 = ( 1 r ) 2 576 r 2 49 + r 2 = 1 2 r + r 2 576 r 2 + 98 r 49 = 0 \begin{aligned} OD^2+PD^2&=OP^2 \\ \\ \left(\frac{24r}{7}\right)^2+r^2&=(1-r)^2 \\ \\ \frac{576r^2}{49}+r^2&=1-2r+r^2 \\ \\ \implies 576r^2+98r-49&=0 \end{aligned} Solving the above quadratic, we have, r = 7 32 O P = 1 r = 25 32 r=\dfrac{7}{32}\implies |OP| = 1-r=\dfrac{25}{32} .

Therefore, a = 25 , b = 32 a 2 b 5 = 5 2 = 3 a=25,\; b=32\implies \sqrt[2]{a}-\sqrt[5]{b}=5-2=\boxed{3}

Thank you for posting !

Valentin Duringer - 3 months, 3 weeks ago

Talk about a "duh" moment! I feel I've taken an absolutely atrocious route to the solution...well done!

Eric Roberts - 3 months, 3 weeks ago

Log in to reply

Thank you!

Sathvik Acharya - 3 months, 2 weeks ago
Eric Roberts
Feb 21, 2021

y = ( 1 r ) sin β Eq1 d = x 2 + y 2 Eq2 \begin{aligned} y &= ( 1-r ) \sin\beta \quad\quad \text{Eq1} \\ \quad \\ d &= \sqrt{x^2 + y^2} \quad\quad \text{Eq2} \end{aligned}

We are given:

x y = 24 7 Eq3 \frac{x}{y} = \frac{24}{7} \quad\quad \text{Eq3}

We can deduce from the geometry and the given coordinate ratio locating the center of the circle:

y = r Eq4 x = 24 7 r Eq5 sin β = 1 ( 24 7 ) 2 + 1 Eq6 \begin{aligned} y &= r \quad\quad \text{Eq4}\\ \quad \\ x &= \frac{24}{7} r \quad\quad \text{Eq5} \\ \quad \\ \sin\beta &= \frac{ 1 }{ \sqrt{ \left( \frac{24}{7} \right)^2 + 1 } } \quad\quad \text{Eq6} \end{aligned}

Let:

φ = ( 24 7 ) 2 + 1 Eq7 \varphi = \sqrt{ \left( \frac{24}{7} \right)^2 + 1 } \quad\quad \text{Eq7}

Next , substitute Eq4, Eq5 Eq2 \text{Eq4, Eq5} \to \text{Eq2} , then Eq7 Eq2 \text{Eq7} \to \text{Eq2} and let the result be Eq2’ \text{Eq2'} :

d = ( 24 7 ) 2 r 2 + r 2 = r ( 24 7 ) 2 + 1 = r φ Eq2’ \begin{aligned} d &= \sqrt{ \left( \frac{24}{7}\right)^2 r^2 + r^2} \\ \quad \\ &= r \sqrt{ \left( \frac{24}{7} \right)^2 + 1 } \\ \quad \\ &= r \varphi \quad\quad \text{Eq2'} \end{aligned}

Substitute Eq7 Eq6 Eq1 \text{Eq7} \to \text{Eq6} \to \text{Eq1} and followed by Eq4 Eq1 \text{Eq4} \to \text{Eq1} and let the result be Eq1’ \text{Eq1'} :

r = ( 1 r ) 1 φ r = \left( 1 - r \right) \frac{1}{ \varphi}

\Rightarrow

r = 1 1 + φ Eq8 r = \frac{1}{1+\varphi} \quad\quad \text{Eq8}

Finally, substitute Eq8 Eq2’ \text{Eq8} \to \text{Eq2'}

d = φ φ + 1 = 25 32 = a b d = \frac{\varphi}{ \varphi + 1} = \frac{25}{32} = \frac{a}{b}

Thus;

a b 5 = 5 2 = 3 \sqrt{a} - \sqrt[5]{b} = 5 - 2 = 3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...