Dynamic Geometry: P41

Geometry Level 4

The diagram shows a cyan circle moving freely so it's inscribed in the pink semicircle at any moment. We use the center of the cyan circle and the intersection points between it and the pink semicircle to draw a black triangle. When the area of the black triangle is maximum , the fraction of the semicircle'area colored in pink can be expressed as:

a b c b \frac {a\sqrt b-c}b

where a a , b b , and c c are positive integers and b b is square-free. Find the smallest a + b + c a+b+c .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

David Vreken
Feb 18, 2021

Let r be the radius of the cyan circle, and label the diagram as follows:

Then O A = O B A B = 1 r OA = OB - AB = 1 - r , so that by the Pythagorean Theorem on O A C \triangle OAC , O C = O A 2 A C 2 = ( 1 r ) 2 r 2 = 1 2 r OC = \sqrt{OA^2 - AC^2} = \sqrt{(1 - r)^2 - r^2} = \sqrt{1 - 2r} .

Also from O A C \triangle OAC , sin O A C = O C O A = 1 2 r 1 r \sin \angle OAC = \cfrac{OC}{OA} = \cfrac{\sqrt{1 - 2r}}{1 - r} .

So the area of A B C \triangle ABC is A A B C = 1 2 A B A C sin B A C = 1 2 r r sin O A C = r 2 1 2 r 2 ( 1 r ) A_{\triangle ABC} = \cfrac{1}{2} \cdot AB \cdot AC \cdot \sin \angle BAC = \cfrac{1}{2} \cdot r \cdot r \cdot \sin \angle OAC = \cfrac{r^2\sqrt{1 - 2r}}{2(1 - r)} .

The maximum area will be when d A A B C d r = r ( 3 r 2 6 r + 2 ) 2 1 2 r ( 1 r ) 2 = 0 \cfrac{dA_{\triangle ABC}}{dr} = \cfrac{r(3r^2 - 6r + 2)}{2\sqrt{1 - 2r}(1 - r)^2} = 0 , which solves to r = 1 1 3 r = 1 - \cfrac{1}{\sqrt{3}} for 0 < r < 1 0 < r < 1 .

The fraction of the semi-circle area colored in pink will then be 1 2 π π ( 1 1 3 ) 1 2 π = 4 3 5 3 \cfrac{\frac{1}{2}\pi - \pi(1 - \frac{1}{\sqrt{3}})}{\frac{1}{2}\pi} = \cfrac{4\sqrt{3} - 5}{3} .

Therefore, a = 4 a = 4 , b = 3 b = 3 , c = 5 c = 5 , and a + b + c = 12 a + b + c = \boxed{12} .

Ahhh too clever !! Nice

Valentin Duringer - 3 months, 3 weeks ago

Log in to reply

one braket is missing I think

Valentin Duringer - 3 months, 3 weeks ago

Log in to reply

Thanks! I corrected it.

David Vreken - 3 months, 3 weeks ago
Valentin Duringer
Feb 17, 2021
  • See the diagram below:
  • Point A ( a ; 0 ) A\left(a;0\right) is moving on the semicircle's diameter.

  • We use the Pythagorean theorem to express the radius r r of the cyan circle in terms of r r : O E 2 = E A 2 + O A 2 < = > ( 1 r ) 2 = r 2 + a 2 OE^2=EA^2+OA^2\:<=>\left(1-r\right)^2=r^2+a^2

  • We get r = 1 2 ( 1 a 2 ) r=\dfrac{1}{2}\left(1-a^2\right)

  • Now we express the sinus of angle F E A FEA to get the area, basic trigonometry gives the value: O A O E = a 1 r = 2 a 1 + a 2 \dfrac{OA}{OE}=\dfrac{a}{1-r}=\dfrac{2a}{1+a^2}

  • Finally the area of triangle A E F AEF is: 1 2 A E 2 2 a 1 + a 2 = 2 a 1 + a 2 ( 1 a 2 2 ) 2 1 2 = a ( 1 a 2 ) 2 4 ( 1 + a 2 ) \dfrac{1}{2}\cdot \:AE^2\cdot \dfrac{2a}{1+a^2}=\dfrac{2a}{1+a^2}\cdot \left(\dfrac{1-a^2}{2}\right)^2\cdot \dfrac{1}{2}=\dfrac{a\left(1-a^2\right)^2}{4\left(1+a^2\right)}

  • We find the derivative of this expression and get : 3 a 6 + 3 a 4 7 a 2 + 1 4 ( 1 + a 2 ) 2 \dfrac{3a^6+3a^4-7a^2+1}{4\left(1+a^2\right)^2}

  • We set the derivative equal to 0 0 to find the value of a a for which the area of the triangle is maximum:

  • 3 a 6 + 3 a 4 7 a 2 + 1 4 ( 1 + a 2 ) 2 = 0 < = > 3 a 6 + 3 a 4 7 a 2 + 1 = 0 \dfrac{3a^6+3a^4-7a^2+1}{4\left(1+a^2\right)^2}=0\:<=>3a^6+3a^4-7a^2+1=0

  • We factor the expression: ( a + 1 ) ( a 1 ) ( 3 a 4 + 6 a 2 1 ) = 0 \left(a+1\right)\left(a-1\right)\left(3a^4+6a^2-1\right)=0

  • The only valid value for a a is 2 3 1 \sqrt{\dfrac{2}{\sqrt{3}}-1}

  • Now we evaluate the value of r r when a = 2 3 1 a=\sqrt{\dfrac{2}{\sqrt{3}}-1} , we get r = 1 1 3 r=1\:-\:\dfrac{1}{\sqrt{3}}

  • So the area of the cyan circle will be equal to 2 3 π ( 2 3 ) \dfrac{2}{3}\pi \cdot \left(2-\sqrt{3}\right)

  • Then the pink area is equal to: 5 π + 4 3 π 6 \dfrac{-5\pi +4\sqrt{3}\pi }{6}

  • Finally the fraction of the semicircle colored in pink is equal to 4 3 5 3 \dfrac{4\sqrt{3}-5}{3}

  • a + b + c = 4 + 3 + 5 = 12 a+b+c=4+3+5=12

Chew-Seong Cheong
Feb 18, 2021

Similar solution with @David Vreken 's just more trigonometry.

Let the diameter base and the center of the semicircle be A B AB and O O and its radius 1 1 . Let C C be the center of the semicircle and P P be the tangent point of the semicircle and circle at an instant. Note that O O , C C , and P P are colinear. At this instant let the radius of the semicircle be r r and P O B = θ \angle POB = \theta . Then P C D = 9 0 + θ \angle PCD = 90^\circ + \theta , where C D CD is perpendicular to A B AB ; and the area of P C D \triangle PCD is given by:

A = r 2 sin ( 9 0 + θ ) 2 Note that sin ( 18 0 ϕ ) = sin ϕ = r 2 cos θ 2 and sin ( 9 0 ϕ ) = cos ϕ = r 2 1 2 r 2 ( 1 r ) Since sin θ = r 1 r cos θ = 1 2 r 1 r \begin{aligned} A_\triangle & = \frac {r^2 \blue{\sin (90^\circ + \theta)}}2 & \small \blue{\text{Note that }\sin (180^\circ - \phi) = \sin \phi} \\ & = \frac {r^2 \blue{\cos \theta}}2 & \small \blue{\text{and }\sin (90^\circ - \phi) = \cos \phi} \\ & = \frac {r^2 \blue{\sqrt{1-2r}}}{2\blue{(1-r)}} & \small \blue{\text{Since }\sin \theta = \frac r{1-r} \implies \cos \theta = \frac {\sqrt{1-2r}}{1-r}} \end{aligned}

To find the maximum of A A_\triangle ,

d A d r = ( ( 2 r 1 2 r r 2 1 2 r ) ( 1 r ) + r 2 1 2 r ) 1 2 ( 1 r ) 2 = ( 2 r ( 1 2 r ) r 2 ) ( 1 r ) + r 2 ( 1 2 r ) 2 ( 1 r ) 2 1 2 r = r ( 3 r 2 6 r + 2 ) 2 ( 1 r ) 2 1 2 r Putting d A d r = 0 3 r 2 6 r + 2 = 0 r = 1 1 3 Since r < 1 \begin{aligned} \frac {dA_\triangle}{dr} & = \left(\left(2r\sqrt{1-2r} - \frac {r^2}{\sqrt{1-2r}}\right)(1-r) + r^2 \sqrt{1-2r}\right) \cdot \frac 1{2(1-r)^2} \\ & = \frac {(2r(1-2r)-r^2)(1-r)+r^2(1-2r)}{2(1-r)^2\sqrt{1-2r}} \\ & = \frac {r(3r^2-6r+2)}{2(1-r)^2\sqrt{1-2r}} \quad \quad \small \blue{\text{Putting }\frac {dA_\triangle}{dr} = 0} \\ 3r^2 - 6r + 2 & = 0 \\ \implies r & = 1 - \frac 1{\sqrt 3} \quad \quad \small \blue{\text{Since }r < 1} \end{aligned}

Therefore A A_\triangle is maximum, when r = 1 1 3 r = 1 - \dfrac 1{\sqrt 3} , then the area of the circle A = ( 1 1 3 ) 2 π = 4 2 3 3 π A_\bigcirc = \left(1-\dfrac 1{\sqrt 3} \right)^2 \pi = \dfrac {4-2\sqrt 3}3 \pi and the fraction of semicircle is pink is π 2 4 2 3 3 π 2 = 4 3 5 3 \dfrac {\frac \pi 2 - \frac {4-2\sqrt 3}3}{\frac \pi 2} = \dfrac {4\sqrt 3 - 5}3 . And the required answer is 12 \boxed{12} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...