Dynamic Geometry: P50

Geometry Level 4

The diagram shows a semicircle with radius 1 1 . A red point is moving along its arc. We use this point and the semicircle's diameter to draw an orange triangle. The green segment is the triangle's height and divides the orange triangle into two smaller triangles. We draw their respective incircles (pink and cyan). When the ratio of their radii is 20 21 \dfrac{20}{21} , the sum of their radii can be expressed as p q \dfrac{p}{q} , where p p and q q are coprime positive integers. Find p + q p+q .


The answer is 1333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sathvik Acharya
Feb 24, 2021

Observe, A D C = B D C = A C B = 9 0 and D A C = D C B \angle ADC=\angle BDC=\angle ACB=90^{\circ}\;\; \text{and} \;\; \angle DAC=\angle DCB A D C C D B A D C D = C D B D C D 2 = A D B D C D = 2 x x 2 \begin{aligned} \implies \triangle ADC&\sim \triangle CDB \\ \frac{AD}{CD}&=\frac{CD}{BD} \\ CD^2&=AD\cdot BD \\ CD&=\sqrt{2x-x^2} \end{aligned} By the Pythagorean Theorem in A D C \triangle ADC and C D B \triangle CDB , A C 2 = C D 2 + A D 2 A C 2 = 2 x x 2 + x 2 A C = 2 x B C 2 = C D 2 + B D 2 B C 2 = 2 x x 2 + ( 2 x ) 2 B C = 4 2 x \begin{aligned} AC^2&=CD^2+AD^2 \\ AC^2&=2x-x^2+x^2 \\ \implies AC&=\sqrt{2x} \\ \\ BC^2&=CD^2+BD^2 \\ BC^2&=2x-x^2+(2-x)^2 \\ \implies BC&=\sqrt{4-2x} \end{aligned} Since the circle centered at O 1 O_1 is the incircle of A D C \triangle ADC , 20 k = A D C D A D + C D + A C r = Δ s = x 2 x x 2 x + 2 x x 2 + 2 x \begin{aligned} \;\;\;\;\;\;\;\;\;\;\;\;20k&=\frac{AD\cdot CD}{AD+CD+AC} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; {\color{#3D99F6}r=\frac{\Delta}{s}} \\ &=\frac{x\sqrt{2x-x^2}}{x+\sqrt{2x-x^2}+\sqrt{2x}} \end{aligned} Since the circle centered at O 2 O_2 is the incircle of C D B \triangle CDB , 21 k = B D C D B D + C D + B C r = Δ s = ( 2 x ) 2 x x 2 2 x + 2 x x 2 + 4 2 x \begin{aligned} \;\;\;\;\;\;\;\;\;\;\;\;21k&=\frac{BD\cdot CD}{BD+CD+BC} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; {\color{#3D99F6}r=\frac{\Delta}{s}} \\ &=\frac{(2-x)\sqrt{2x-x^2}}{2-x+\sqrt{2x-x^2}+\sqrt{4-2x}} \end{aligned} Solving the pair of equations, { 20 k = x 2 x x 2 x + 2 x x 2 + 2 x 21 k = ( 2 x ) 2 x x 2 2 x + 2 x x 2 + 4 2 x \begin{cases} 20k=\dfrac{x\sqrt{2x-x^2}}{x+\sqrt{2x-x^2}+\sqrt{2x}} \\ \\ 21k=\dfrac{(2-x)\sqrt{2x-x^2}}{2-x+\sqrt{2x-x^2}+\sqrt{4-2x}} \end{cases} we have, k = 12 841 20 k + 21 k = 492 841 k=\dfrac{12}{841}\implies 20k+21k=\dfrac{492}{841}

Therefore, p = 492 , q = 841 p + q = 1333 p=492,\; q=841\implies p+q=\boxed{1333}

That one is not easy, well done !

Valentin Duringer - 3 months, 2 weeks ago

Log in to reply

Thank you, I missed the similar triangles (though I have seen the idea multiple times) and just couldn't find enough equations/observations. Nice problem!

Sathvik Acharya - 3 months, 2 weeks ago
David Vreken
Mar 2, 2021

Label the diagram as follows:

By Thales's Theorem , A D C \angle ADC is a right angle, and since A B D \angle ABD and C B D \angle CBD are also right angles, A B D = 90 ° A D B = B D C \angle ABD = 90° - \angle ADB = \angle BDC , so A D C A B D D B C \triangle ADC \sim \triangle ABD \sim \triangle DBC by AA similarity.

Let a = A D a = AD and b = D C b = DC . By the Pythagorean Theorem on A D C \triangle ADC , a 2 + b 2 = 4 a^2 + b^2 = 4 .

When the ratio of the inradii of A B D \triangle ABD and D B C \triangle DBC is 20 21 \cfrac{20}{21} , the ratio of the hypotenuses of A B D \triangle ABD and D B C \triangle DBC will also be 20 21 \cfrac{20}{21} , so a b = 20 21 \cfrac{a}{b} = \cfrac{20}{21} .

The two equations a 2 + b 2 = 4 a^2 + b^2 = 4 and a b = 20 21 \cfrac{a}{b} = \cfrac{20}{21} solve to a = A D = 40 29 a = AD = \cfrac{40}{29} and b = D C = 42 29 b = DC = \cfrac{42}{29} .

Since A B D A D C \triangle ABD \sim \triangle ADC , A B = A D A D A C = 40 29 40 29 2 = 800 841 AB = AD \cdot \cfrac{AD}{AC} = \cfrac{40}{29} \cdot \cfrac{\frac{40}{29}}{2} = \cfrac{800}{841} and B D = A D D C A C = 40 29 42 29 2 = 840 841 BD = AD \cdot \cfrac{DC}{AC} = \cfrac{40}{29} \cdot \cfrac{\frac{42}{29}}{2} = \cfrac{840}{841} .

The inradius of A B D \triangle ABD is then r 1 = 1 2 ( A B + B D A D ) = 1 2 ( 800 841 + 840 841 40 29 ) = 240 841 r_1 = \cfrac{1}{2}(AB + BD - AD) = \cfrac{1}{2}\bigg(\cfrac{800}{841} + \cfrac{840}{841} - \cfrac{40}{29}\bigg) = \cfrac{240}{841} .

And the inradius of B D C \triangle BDC is then r 2 = 21 20 r 1 = 252 841 r_2 = \cfrac{21}{20}r_1 = \cfrac{252}{841} .

Which makes the sum of the two radii r 1 + r 2 = 240 841 + 252 841 = 492 841 r_1 + r_2 = \cfrac{240}{841} + \cfrac{252}{841} = \cfrac{492}{841} , so p = 492 p = 492 , q = 841 q = 841 , and p + q = 1333 p + q = \boxed{1333} .

Thank you for posting your solution David !

Valentin Duringer - 3 months, 1 week ago
Chew-Seong Cheong
Feb 27, 2021

The half-angle tangent substitution makes it straight forward in solving incircle problems as illustrated in this solution.

Let the center of the semicircle be O O , its diameter be A B AB , the red point on the arc be P P , and the green segment be P N PN . Note that P N PN is perpendicular to A B AB . Let P O B = θ \angle POB = \theta , then P A B = θ 2 \angle PAB = \dfrac \theta 2 . Due to similar triangles B P N = θ 2 \angle BPN = \dfrac \theta 2 . Let also the radius of the cyan circle be r 1 r_1 . Note that the line joining P P and the center of the cyan circle bisect B P N \angle BPN . Therefore we have:

r 1 cot θ 4 + r 1 = P N Let t = tan θ 4 r 1 1 + t t = P N . . . ( 1 ) \begin{aligned} r_1 \cot \frac \theta 4 + r_1 & = PN & \small \blue{\text{Let }t = \tan \frac \theta 4} \\ r_1 \cdot \frac {1+t}t & = PN & ...(1) \end{aligned}

Similarly, let the radius of the pink circle be r 2 r_2 . Note that A P B = 9 0 \angle APB = 90^\circ . Then

r 2 cot ( 9 0 θ 2 2 ) + r 2 = P N r 2 cot ( 4 5 θ 4 ) + r 2 = P N r 2 1 + t 1 t + r 2 = P N r 2 2 1 t = P N . . . ( 2 ) \begin{aligned} r_2 \cot \left(\frac {90^\circ - \frac \theta 2}2 \right) + r_2 & = PN \\ r_2 \cot \left(45^\circ - \frac \theta 4 \right) + r_2 & = PN \\ r_2 \cdot \frac {1+t}{1-t} + r_2 & = PN \\ r_2 \cdot \frac 2{1-t} & = PN & ...(2) \end{aligned}

From ( 1 ) ( 2 ) : \dfrac {(1)}{(2)}:

r 1 1 + t t r 2 2 1 t = P N P N = 1 Putting r 1 r 2 = 20 21 20 1 + t t = 21 2 1 t 20 ( 1 t 2 ) = 42 t 10 t 2 + 21 t 10 = 0 ( 5 t 2 ) ( 2 t + 5 ) = 0 t = 2 5 Since θ 4 is acute. \begin{aligned} \frac {r_1 \cdot \frac {1+t}t}{r_2 \cdot \frac 2{1-t}} & = \frac {PN}{PN} = 1 & \small \blue{\text{Putting }\frac {r_1}{r_2} = \frac {20}{21}} \\ 20 \cdot \frac {1+t}t & = 21 \cdot \frac 2{1-t} \\ 20(1-t^2) & = 42 t \\ 10t^2 + 21 t - 10 & = 0 \\ (5t-2)(2t+5) & = 0 \\ \implies t & = \frac 25 & \small \blue{\text{Since }\frac \theta 4 \text{ is acute.}} \end{aligned}

Note that P N = sin θ PN = \sin \theta and that tan θ 2 = 2 t 1 t 2 = 20 21 \tan \dfrac \theta 2 = \dfrac {2t}{1-t^2} = \dfrac {20}{21} , tan θ = 2 20 21 1 ( 20 21 ) 2 = 840 41 \tan \theta = \dfrac {2 \cdot \frac {20}{21}}{1-\left(\frac {20}{21}\right)^2} = \dfrac {840}{41} ., and sin θ = 840 84 0 2 + 4 1 2 = 840 841 \sin \theta = \dfrac {840}{\sqrt{840^2+41^2}} = \dfrac {840}{841} . Then from ( 2 ) (2) ,

2 r 2 1 t = P N = sin θ = 840 841 r 2 = 420 ( 1 2 5 ) 841 = 252 841 r 1 = 20 21 r 2 r 1 + r 2 = ( 20 21 + 1 ) r 2 = 41 21 252 841 = 492 841 \begin{aligned} \frac {2r_2}{1-t} & = PN = \sin \theta = \frac {840}{841} \\ \implies r_2 & = \frac {420 \left(1-\frac 25\right)}{841} = \frac {252}{841} \\ r_1 & = \frac {20}{21}r_2 \\ \implies r_1 + r_2 & = \left(\frac {20}{21} + 1 \right) r_2 = \frac {41}{21} \cdot \frac {252}{841} = \frac {492}{841} \end{aligned}

Therefore p + q = 492 + 841 = 1333 p+q = 492 + 841 = \boxed{1333} .

Clever approach ! Thanks for posting !

Valentin Duringer - 3 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...