Dynamic Geometry: P54

Geometry Level 4

The diagram shows a semicircle with radius 1 1 . A red point is freely moving along its arc. We use this point and the semicircle's diameter to draw a blue triangle. We draw the median of its base in green, dividing the blue triangle into two smaller triangles and we draw their incircles. When the ratio of their radii is equal to 25 32 \dfrac{25}{32} , the sum of their radii can be expressed as p q \dfrac{p}{q} , where p p and q q are coprime positive integers. Find p + q p+q


The answer is 511.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Zakir Husain
Mar 1, 2021

Need to know :

For a triangle with side length a , b , c A r e a = r s a,b,c\space Area=rs where r r is the radius of it's incircle and s = a + b + c 2 . . . . . . . . . . [ A ] s=\dfrac{a+b+c}{2}..........[A]

Let the diameter of the semicircle be A B \overline{AB} , its center point be O O and the other radius separating the two circle be O P \overline{OP}

Let a = A P , b = P B a=\overline{AP}, b=\overline{PB} and let the radius of the triangles formed be r 1 , r 2 r_1,r_2

From Apollonius theorem we get : a 2 + b 2 = 4.......... [ 1 ] a^2+b^2=4..........[1] Using [ A ] [A] relation we get : a b 2 = r 1 ( a 2 + 1 ) = r 2 ( b 2 + 1 ) \dfrac{ab}{2}=r_1(\frac{a}{2}+1)=r_2(\frac{b}{2}+1) r 1 r 2 = b 2 + 1 a 2 + 1 \Rightarrow \dfrac{r_1}{r_2}=\dfrac{\frac{b}{2}+1}{\frac{a}{2}+1} = b + 2 a + 2 = 25 32 =\dfrac{b+2}{a+2}=\dfrac{25}{32} 25 a 32 b = 14 \Rightarrow 25a-32b=14 a = 14 + 32 b 25 . . . . . . . . . . [ 2 ] \Rightarrow a=\dfrac{14+32b}{25}..........[2] Putting this in [ 1 ] [1] and simplifying we get 1649 b 2 + 896 b 2304 = 0 1649b^2+896b-2304=0 Using Quadratic formula and the inequality : b > 0 b>0 we get b = 16 17 b=\dfrac{16}{17} Putting this in [ 2 ] [2] a = 30 17 a=\dfrac{30}{17} Now in O P A \triangle OPA and O P B \triangle OPB we know all the sides

Hence we can find that : a r ( O P A ) = 120 289 ar(\triangle OPA)=\dfrac{120}{289} a r ( O P B ) = 120 289 ar(\triangle OPB)=\dfrac{120}{289} And we can also find the semiperimeters which are 32 17 , 25 17 \dfrac{32}{17},\dfrac{25}{17} respectively

Hence using [ A ] [A] we can find r 1 = 15 68 r_1=\dfrac{15}{68} r 2 = 24 85 r_2=\dfrac{24}{85} r 1 + r 2 = 171 340 \Rightarrow r_1+r_2=\dfrac{171}{340} A n s = 171 + 340 = 511 \therefore Ans=171+340=\boxed{511}

Note :

  • a r ( X ) ar(X) represents area of planar figure X X

Interesting solution !

Valentin Duringer - 3 months, 1 week ago

I did it using coordinate geometry, where the point on the black semicircle has coordinate (x,y) with centre of semicircle as origin, then we can find area of big triangle as y, and each of the small triangle has area 0.5y since the green line is median, and then we can find the sides using distance formula, then we apply area = (semi perimeter)×inradius, and solve that equation along with x²+y² =1.

Omek K - 3 months, 1 week ago
David Vreken
Mar 4, 2021

Draw the perpendicular bisectors of the legs of the triangle, and label the diagram as follows:

Let x = C D x = CD . Then by the Pythagorean Theorem on O D C \triangle ODC , O D = O C 2 C D 2 = 1 x 2 OD = \sqrt{OC^2 - CD^2} = \sqrt{1 - x^2} , so the area of A O C \triangle AOC is A A O C = 1 2 A C O D = 1 2 2 x 1 x 2 = x 1 x 2 A_{\triangle AOC} = \frac{1}{2} \cdot AC \cdot OD = \frac{1}{2} \cdot 2x \cdot \sqrt{1 - x^2} = x\sqrt{1 - x^2} and the perimeter of A O C \triangle AOC is P A O C = A C + A O + O C = 2 x + 1 + 1 = 2 x + 2 P_{\triangle AOC} = AC + AO + OC = 2x + 1 + 1 = 2x + 2 .

By Thales's Theorem , A C B \angle ACB is a right angle, so O D C E ODCE is a rectangle, and O E = D C = x OE = DC = x and E C = O D = 1 x 2 EC = OD = \sqrt{1 - x^2} , which makes the area of B O C \triangle BOC A B O C = 1 2 C B O E = 1 2 2 1 x 2 x = x 1 x 2 A_{\triangle BOC} = \frac{1}{2} \cdot CB \cdot OE = \frac{1}{2} \cdot 2\sqrt{1 - x^2} \cdot x = x\sqrt{1 - x^2} and the perimeter P B O C = C B + O B + O C = 2 1 x 2 + 1 + 1 = 2 1 x 2 + 2 P_{\triangle BOC} = CB + OB + OC = 2\sqrt{1 - x^2} + 1 + 1 = 2\sqrt{1 - x^2} + 2 .

The inradius of A O C \triangle AOC is then r A O C = 2 A A O C P A O C = 2 x 1 x 2 2 x + 2 = x 1 x 2 x + 1 r_{\triangle AOC} = \cfrac{2A_{\triangle AOC}}{P_{\triangle AOC}} = \cfrac{2x\sqrt{1 - x^2}}{2x + 2} = \cfrac{x\sqrt{1 - x^2}}{x + 1} and the inradius of B O C \triangle BOC is r B O C = 2 A B O C P B O C = x 1 x 2 1 x 2 + 1 r_{\triangle BOC} = \cfrac{2A_{\triangle BOC}}{P_{\triangle BOC}} = \cfrac{x\sqrt{1 - x^2}}{\sqrt{1 - x^2} + 1} .

If the ratio of the radii is 25 32 \cfrac{25}{32} , then r B O C r A O C = x 1 x 2 1 x 2 + 1 x 1 x 2 x + 1 = x + 1 1 x 2 + 1 = 25 32 \cfrac{r_{\triangle BOC}}{r_{\triangle AOC}} = \cfrac{\frac{x\sqrt{1 - x^2}}{\sqrt{1 - x^2} + 1}}{\frac{x\sqrt{1 - x^2}}{x + 1}} = \cfrac{x + 1}{\sqrt{1 - x^2} + 1} = \cfrac{25}{32} , which solves to x = 8 17 x = \cfrac{8}{17} .

Then r A O C = x 1 x 2 x + 1 = 8 17 1 ( 8 17 ) 2 8 17 + 1 = 24 85 r_{\triangle AOC} = \cfrac{x\sqrt{1 - x^2}}{x + 1} = \cfrac{\frac{8}{17}\sqrt{1 - (\frac{8}{17})^2}}{\frac{8}{17} + 1} = \cfrac{24}{85} and r B O C = x 1 x 2 1 x 2 + 1 = 8 17 1 ( 8 17 ) 2 1 ( 8 17 ) 2 + 1 = 15 68 r_{\triangle BOC} = \cfrac{x\sqrt{1 - x^2}}{\sqrt{1 - x^2} + 1} = \cfrac{\frac{8}{17}\sqrt{1 - (\frac{8}{17})^2}}{\sqrt{1 - (\frac{8}{17})^2} + 1} = \cfrac{15}{68} , so r A O C + r B O C = 24 85 + 15 68 = 171 340 r_{\triangle AOC} + r_{\triangle BOC} = \cfrac{24}{85} + \cfrac{15}{68} = \cfrac{171}{340} , which means p = 171 p = 171 , q = 340 q = 340 , and p + q = 511 p + q = \boxed{511} .

Application of half-angle tangent substitution reduces incircles in triangle problem into solving polynomial of t t as shown in this solution.

Label the center of the semicircle O O and the triangle A B C ABC with A B AB being the diameter of the semicircle. Let the radii of the right and left circles be r 1 r_1 and r 2 r_2 respectively, and C B O = θ \angle CBO = \theta , then C O B = 18 0 2 θ \angle COB = 180^\circ - 2\theta , C O A = 2 θ \angle COA = 2 \theta , and C A O = 9 0 θ \angle CAO = 90^\circ - \theta .

Consider the segment O B OB ; we note that:

r 1 cot C O B 2 + r 1 cot C B O 2 = O B r 1 cot ( 9 0 θ ) + r 1 cot θ 2 = 1 Let t = tan θ 2 r 1 2 t 1 t 2 + r 1 t = 1 r 1 1 + t 2 t ( 1 t 2 ) = 1 . . . ( 1 ) \begin{aligned} r_1 \cot \frac {\angle COB}2 + r_1 \cot \frac {\angle CBO}2 & = OB \\ r_1 \cot \left(90^\circ - \theta\right) + r_1 \cot \frac \theta 2 & = 1 & \small \blue{\text{Let }t = \tan \frac \theta 2} \\ r_1 \cdot \frac {2t}{1-t^2} + \frac {r_1}t & = 1 \\ r_1 \cdot \frac {1+t^2}{t(1-t^2)} & = 1 & ...(1) \end{aligned}

Similarly,

r 2 cot ( 4 5 θ 2 ) + r 2 cot θ = A O r 2 1 + t 1 t + r 2 1 t 2 2 t = 1 r 2 t 3 + t 2 + t + 1 2 t ( 1 t ) = 1 . . . ( 2 ) \begin{aligned} r_2 \cot \left(45^\circ - \frac \theta 2\right) + r_2 \cot \theta & = AO \\ r_2 \cdot \frac {1+t}{1-t} + r_2 \cdot \frac {1-t^2}{2t} & = 1 \\ r_2 \cdot \frac {t^3+t^2+t+1}{2t(1-t)} & = 1 & ...(2) \end{aligned}

From ( 1 ) ( 2 ) \dfrac {(1)}{(2)} :

r 1 ( 1 + t 2 ) 2 t ( 1 t ) r 2 t ( 1 t 2 ) ( t 3 + t 2 + t + 1 ) = 1 2 r 1 r 2 ( 1 + t ) 2 = 1 Putting r 1 r 2 = 25 32 25 16 ( 1 + t ) 2 = 1 ( 1 + t ) 2 = 25 16 1 + t = 5 4 t = 1 4 \begin{aligned} \frac {r_1(1+t^2)\cdot 2t(1-t)}{r_2t(1-t^2)(t^3+t^2+t+1)} & = 1 \\ \frac {2r_1}{r_2(1+t)^2} & = 1 & \small \blue{\text{Putting }\frac {r_1}{r_2} = \frac {25}{32}} \\ \frac {25}{16(1+t)^2} & = 1 \\ (1+t)^2 & = \frac {25}{16} \\ 1 + t & = \frac 54 \\ \implies t & = \frac 14 \end{aligned}

From ( 1 ) (1) : r 1 = t ( 1 t 2 ) 1 + t 2 = 15 68 r_1 = \dfrac {t(1-t^2)}{1+t^2} = \dfrac {15}{68} . The sum of two radii r 1 + r 2 = ( 1 + 32 25 ) r 1 = 57 25 15 68 = 171 340 r_1 + r_2 = \left(1 + \dfrac {32}{25}\right) r_1 = \dfrac {57}{25} \cdot \dfrac {15}{68} = \dfrac {171}{340} . Therefore p + q = 171 + 340 = 551 p+q = 171 + 340 = \boxed{551} .

Nicely done.

Valentin Duringer - 3 months, 1 week ago
Fletcher Mattox
Mar 1, 2021
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
from sympy import *
from sympy.abc import x 

A = Point(x, sqrt(1 - x**2))        # semicircle
O = Point(0, 0)
C = Point(1, 0)
B = Point(-1, 0)
r1 = Triangle(A, B, O).inradius
r2 = Triangle(A, O, C).inradius
for i in solve(r1/r2 - Integer(25)/32, x):
    r1 = r1.subs(x, i)
    r2 = r2.subs(x, i)
    rsum = r1 + r2
    print("radii:   ", r1, "+", r2, "=", rsum)
    print("solution:", rsum.numerator(), "+", rsum.denominator(), "=", rsum.numerator() + rsum.denominator())

1
2
radii:    15/68 + 24/85 = 171/340
solution: 171 + 340 = 511

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...