Dynamic Geometry: P60

Geometry Level 4

The diagram shows a black semicircle with radius 1 1 . A red point is freely moving along its arc. We use this point and the semicircle's diameter to draw a blue triangle. We draw the median of its base in green, dividing the blue triangle into two smaller triangles and we draw their incircles. The centers of these incircles trace a locus (cyan curves). The area bounded by the black semicircle's diameter and one cyan curve can be expressed as p π q p-\dfrac{\pi }{q} , where p p and q q are positive integers. Find p + q p+q .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let the center of the semicircle be O ( 0 , 0 ) O(0,0) , the origin of the x y xy -plane, and the blue triangle be A B C ABC , where A B AB is the diameter of the semicircle. Consider the locus on in the positive quadrant and let a point on the locus be P ( x , y ) P(x,y) and P N PN be perpendicular to A B AB ; then P N = y PN=y and O N = x ON=x . Let C O B = 2 θ \angle COB = 2 \theta ; then O C B = O B C = π 2 θ \angle OCB = \angle OBC = \frac \pi 2 - \theta . Note that O P OP bisects C O B \angle COB . Therefore, P O B = θ \angle POB = \theta and P B O = π 4 θ 3 \angle PBO = \frac \pi 4 - \frac \theta 3 . From

O N + N B = O B y cot θ + y cot ( π 4 θ 2 ) = 1 Let t = tan θ 2 y 1 t 2 2 t + y 1 + t 1 t = 1 ( 1 + t ) ( 1 + t 2 ) 2 t ( 1 t ) y = 1 y = 2 t 1 + t 2 1 t 1 + t = sin θ ( 1 t ) 2 ( 1 + t ) ( 1 t ) = sin θ 1 2 t + t 2 1 t 2 = sin θ ( 1 + t 2 1 t 2 2 t 1 t 2 ) = sin θ ( sec θ tan θ ) y = tan θ ( 1 sin θ ) Note that y x = tan θ x = 1 sin θ \begin{aligned} ON + NB & = OB \\ y \cot \theta + y \cot \left(\frac \pi 4 - \frac \theta 2 \right) & = 1 & \small \blue{\text{Let }t = \tan \frac \theta 2} \\ y \cdot \frac {1-t^2}{2t} + y \cdot \frac {1+t}{1-t} & = 1 \\ \frac {(1+t)(1+t^2)}{2t(1-t)} \cdot y & = 1 \\ \implies y & = \blue{\frac {2t}{1+t^2}} \cdot \frac {1-t}{1+t} \\ & = \blue{\sin \theta} \cdot \frac {(1-t)^2}{(1+t)(1-t)} \\ & = \sin \theta \cdot \frac {1-2t+t^2}{1-t^2} \\ & = \sin \theta \left(\frac {1+t^2}{1-t^2} - \frac {2t}{1-t^2} \right) \\ & = \sin \theta (\sec \theta - \tan \theta) \\ \implies y & = \tan \theta (1-\sin \theta) & \small \blue{\text{Note that }\frac yx = \tan \theta} \\ \implies x & = 1 - \sin \theta \end{aligned}

Now the area under the locus is given by:

A = 0 1 y d x = π 2 0 tan θ ( 1 sin θ ) d ( 1 sin θ ) = 0 π 2 sin θ ( 1 sin θ ) d θ = 0 π 2 ( sin θ 1 cos 2 θ 2 ) d θ = cos θ θ 2 + sin 2 θ 4 0 π 2 = 1 π 4 \begin{aligned} A & = \int_0^1 y \ \text dx \\ & = \int_\frac \pi 2^0 \tan \theta (1-\sin \theta) \ \text d(1-\sin \theta) \\ & = \int_0^\frac \pi 2 \sin \theta (1-\sin \theta) \ \text d \theta \\ & = \int_0^\frac \pi 2 \left(\sin \theta - \frac {1 - \cos 2 \theta}2 \right) \text d \theta \\ & = - \cos \theta - \frac \theta 2 + \frac {\sin 2 \theta}4 \ \bigg|_0^\frac \pi 2 \\ & = 1 - \frac \pi 4 \end{aligned}

Therefore p + q = 1 + 4 = 5 p+q = 1 + 4 = \boxed 5 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...