Dynamic Geometry: P72

Geometry Level pending

The diagram shows a unit black square. A red quarter circle is drawn using the side of the square as the radius. Two yellow semicircles are drawn. Each center moves on one square's side so the semicircles are growing, shrinking and are tangent to each other at any moment. Then, we draw a cyan circle so it's tangent to the two yellow semicircles and internally tangent to the red quarter circle. We use the tangency points between the semicircles to draw a purple triangle. When its area is equal to 36 1015 \dfrac{36}{1015} , the ratio of the larger yellow semicircle’s radius to the smaller yellow semicircle’s radius can be expressed as p q \dfrac{p}{q} , where p p and q q are coprime positive integers. Find p q p-q .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Disclaimer: This is a lengthy and detailed approach.

Preliminaries
Let A B C D ABCD be the square. Denote the centers of the semicircles by K K , L L , their radii by r 1 {{r}_{1}} , r 2 {{r}_{2}} respectively and their intersection point by P P . Denote by E E the intersection of the perpendicular bisectors of A B AB and A D AD . Denote by Q Q , H H , R R and I I the intersections of these lines with the semicircles and sides B C BC and C D CD , as seen in figure 1. Let J J be the intersection of line A E AE with the red arc.

Let K D P = K P D = θ \angle KDP=\angle KPD=θ and L B P = L P B = φ \angle LBP=\angle LPB=φ (figure 2).
Points K K , P P and L L are collinear, and A K L = 2 θ \angle AKL=2θ , A L K = 2 φ \angle ALK=2φ , thus 2 θ + 2 φ = 180 K A L = 180 90 = 90 2\theta +2\varphi =180{}^\circ -\angle KAL=180{}^\circ -90{}^\circ =90{}^\circ , hence θ + φ = 45 ( 1 ) \theta +\varphi =45{}^\circ \ \ \ \ \ (1) Step 1: To prove that E E is the center of the cyan circle (figure 1).
It is easy to see that Q Q and R R belong to the diagonal B D BD of the square.
Moreover, Q E = K H K Q E H = K H K Q L B = 1 r 1 r 2 ( 2 ) QE=KH-KQ-EH=KH-KQ-LB=1-{{r}_{1}}-{{r}_{2}} \ \ \ \ \ (2)
Similarly, E R = I L I E R L = I L D K R L = 1 r 1 r 2 ER=IL-IE-RL=IL-DK-RL=1-{{r}_{1}}-{{r}_{2}} Hence the circle with center E E and radius y = Q E = E R = 1 r 1 r 2 y=QE=ER=1-{{r}_{1}}-{{r}_{2}} is tangent to both semicircles.
Furthermore, E J = A J A E = A J K L = 1 ( r 1 + r 2 ) EJ=AJ-AE=AJ-KL=1-\left( {{r}_{1}}+{{r}_{2}} \right) Thus, E E is the center of the cyan circle tangent to the semicircles and the red arc.

Step 2: To establish a relation for r 1 {{r}_{1}} and r 2 {{r}_{2}}
By Pythagorean theorem on A K L \triangle AKL we have K L 2 = A K 2 + A L 2 ( r 1 + r 2 ) 2 = ( 1 r 1 ) 2 + ( 1 r 2 ) 2 K{{L}^{2}}=A{{K}^{2}}+A{{L}^{2}}\Rightarrow {{\left( {{r}_{1}}+{{r}_{2}} \right)}^{2}}={{\left( 1-{{r}_{1}} \right)}^{2}}+{{\left( 1-{{r}_{2}} \right)}^{2}} which gives r 1 + r 2 = 1 r 1 r 2 ( 3 ) {{r}_{1}}+{{r}_{2}}=1-{{r}_{1}}{{r}_{2}} \ \ \ \ \ (3)

Step 3: To find expressions for the area of P Q R \triangle PQR (figure 3)
Figure 3 Figure 3 Let P M PM be a height of P Q R \triangle PQR .
We notice that P D = 2 r 1 cos θ PD=2{{r}_{1}}\cos \theta and P B = 2 r 2 cos φ PB=2{{r}_{2}}\cos \varphi .
Hence for the area, [ P Q R ] = 1 2 Q R P M = 1 2 ( 2 Q E ) P D sin ( 45 θ ) = ( 2 ) 2 2 ( 1 r 1 r 2 ) ( 2 r 1 cos θ ) sin ( 45 θ ) = = ( 3 ) , ( 1 ) 2 ( r 1 r 2 ) r 1 cos θ sin φ r 2 [ P Q R ] = 2 ( r 1 r 2 ) 2 cos θ sin φ ( 4 ) \begin{aligned} \left[ PQR \right] & =\frac{1}{2}QR\cdot PM \\ & =\frac{1}{2}\left( \sqrt{2}QE \right)\cdot PD\sin \left( 45{}^\circ -\theta \right) \\ & \overset{\left( 2 \right)}{\mathop{=}}\,\frac{\sqrt{2}}{2}\left( 1-{{r}_{1}}-{{r}_{2}} \right)\cdot \left( 2{{r}_{1}}\cos \theta \right)\sin \left( 45{}^\circ -\theta \right)= \\ & \overset{\left( 3 \right),\left( 1 \right)}{\mathop{=}}\,\sqrt{2}\left( {{r}_{1}}{{r}_{2}} \right){{r}_{1}}\cos \theta \sin \varphi \\ & \\ & \Rightarrow {{r}_{2}}\left[ PQR \right]=\sqrt{2}{{\left( {{r}_{1}}{{r}_{2}} \right)}^{2}}\cos \theta \sin \varphi \ \ \ \ \ (4)\\ \end{aligned}

In the same time, [ P Q R ] = 1 2 ( 2 Q E ) P B sin ( 45 φ ) = ( 2 ) , ( 1 ) 2 2 ( 1 r 1 r 2 ) ( 2 r 2 cos φ ) sin θ = = ( 3 ) 2 ( r 1 r 2 ) r 2 cos φ sin θ r 1 [ P Q R ] = 2 ( r 1 r 2 ) 2 cos φ sin θ ( 5 ) \begin{aligned} \left[ PQR \right] & =\frac{1}{2}\left( \sqrt{2}QE \right)\cdot PB\sin \left( 45{}^\circ -\varphi \right) \\ & \overset{\left( 2 \right),\left( 1 \right)}{\mathop{=}}\,\frac{\sqrt{2}}{2}\left( 1-{{r}_{1}}-{{r}_{2}} \right)\cdot \left( 2{{r}_{2}}\cos \varphi \right)\sin \theta = \\ & \overset{\left( 3 \right)}{\mathop{=}}\,\sqrt{2}\left( {{r}_{1}}{{r}_{2}} \right){{r}_{2}}\cos \varphi \sin \theta \\ & \\ & \Rightarrow {{r}_{1}}\left[ PQR \right]=\sqrt{2}{{\left( {{r}_{1}}{{r}_{2}} \right)}^{2}}\cos \varphi \sin \theta \ \ \ \ \ (5)\\ \end{aligned}

Step 4: To deduce an equation for x = r 1 r 2 x={{r}_{1}}{{r}_{2}} and solve it
Adding ( 4 ) (4) and ( 5 ) (5) , ( r 1 + r 2 ) [ P Q R ] = 2 ( r 1 r 2 ) 2 ( cos θ sin φ + cos φ sin θ ) ( 3 ) ( 1 r 1 r 2 ) 36 1015 = 2 ( r 1 r 2 ) 2 sin ( θ + φ ) ( 1 ) ( 1 r 1 r 2 ) 36 1015 = 2 ( r 1 r 2 ) 2 sin ( 45 ) ( 1 r 1 r 2 ) 36 1015 = 2 ( r 1 r 2 ) 2 2 2 1015 ( r 1 r 2 ) 2 + 36 r 1 r 2 36 = 0 r 1 r 2 > 0 r 1 r 2 = 6 35 \begin{aligned} & \left( {{r}_{1}}+{{r}_{2}} \right)\left[ PQR \right]=\sqrt{2}{{\left( {{r}_{1}}{{r}_{2}} \right)}^{2}}\left( \cos \theta \sin \varphi +\cos \varphi \sin \theta \right) \\ & \overset{\left( 3 \right)}{\mathop{\Rightarrow }}\,\left( 1-{{r}_{1}}{{r}_{2}} \right)\frac{36}{1015}=\sqrt{2}{{\left( {{r}_{1}}{{r}_{2}} \right)}^{2}}\sin \left( \theta +\varphi \right) \\ & \overset{\left( 1 \right)}{\mathop{\Rightarrow }}\,\left( 1-{{r}_{1}}{{r}_{2}} \right)\frac{36}{1015}=\sqrt{2}{{\left( {{r}_{1}}{{r}_{2}} \right)}^{2}}\sin \left( 45{}^\circ \right) \\ & \Rightarrow \left( 1-{{r}_{1}}{{r}_{2}} \right)\frac{36}{1015}=\sqrt{2}{{\left( {{r}_{1}}{{r}_{2}} \right)}^{2}}\frac{\sqrt{2}}{2} \\ & \Rightarrow 1015{{\left( {{r}_{1}}{{r}_{2}} \right)}^{2}}+36{{r}_{1}}{{r}_{2}}-36=0 \\ & \overset{{{r}_{1}}{{r}_{2}}>0}{\mathop{\Rightarrow }}\,{{r}_{1}}{{r}_{2}}=\frac{6}{35} \\ \end{aligned}

Step 5: To find r 1 {{r}_{1}} , r 2 {{r}_{2}} and hence their ratio
Since r 1 r 2 = 6 35 {{r}_{1}}{{r}_{2}}=\dfrac{6}{35} , ( 3 ) r 1 + r 2 = 29 35 \left( 3 \right)\Rightarrow {{r}_{1}}+{{r}_{2}}=\dfrac{29}{35} , hence r 1 {{r}_{1}} , r 2 {{r}_{2}} are the roots of the quadratic equation x 2 29 35 x + 6 35 = 0 {{x}^{2}}-\dfrac{29}{35}x+\dfrac{6}{35}=0 , i.e. r 1 = 3 7 a n d r 2 = 2 5 {{r}_{1}}=\dfrac{3}{7} \ \ \ and \ \ \ {{r}_{2}}=\dfrac{2}{5} or vice versa.
Hence the ratio of the larger yellow semicircle’s radius to the smaller yellow semicircle’s radius is 3 7 2 5 = 15 14 \dfrac{\dfrac{3}{7}}{\dfrac{2}{5}}=\dfrac{15}{14} For the answer, p = 15 p=15 , q = 15 q=15 , thus, p q = 1 p-q=\boxed{1} .

\ \ \

Fun facts about the purple triangle:

  • base Q R QR always lie on one of the square's diagonals.
  • The angle Q P R \angle QPR remains constantly 45 45{}^\circ .
  • Vertex P P and the point of tangency of the cyan circle with the red quarter of a circle are symmetrical with respect to a square's diagonal.
  • P P is moving along a quarter of a circle with center one vertex of the square and radius 1.
  • P P and the centers of the two yellow semicircles are collinear points.

I really like this setup, it is so simple and yet so rich, thank you for posting!

Valentin Duringer - 2 months, 4 weeks ago
Chew-Seong Cheong
Mar 14, 2021

Let the radii of the right semicircle, left semicircle, and cyan circle be r 0 r_0 , r 1 r_1 , and r 2 r_2 respectively. By Pythagorean theorem , we note that:

( 1 r 0 ) 2 + ( 1 r 1 ) 2 = ( r 0 + r 1 ) 2 1 2 r 0 + r 0 2 + 1 2 r 1 + r 1 2 = r 0 2 + 2 r 0 r 1 + r 1 2 1 r 0 r 1 = r 0 r 1 r 1 = 1 r 0 1 + r 0 \begin{aligned} (1-r_0)^2 + (1-r_1)^2 & = (r_0+r_1)^2 \\ 1 - 2r_0 + r_0^2 + 1 - 2r_1 + r_1^2 & = r_0^2 + 2r_0r_1 + r_1^2 \\ 1 - r_0 - r_1 & = r_0r_1 \\ \implies r_1 & = \frac {1-r_0}{1+r_0} \end{aligned}

We also note that:

r 1 + r 2 = 1 r 0 r 2 = 1 r 0 r 1 Note that 1 r 0 r 1 = r 0 r 1 r 2 = r 0 r 1 \begin{aligned} r_1 + r_2 & = 1 - r_0 \\ r_2 & = \blue{1 - r_0 - r_1} & \small \blue{\text{Note that }1-r_0-r_1 = r_0r_1} \\ \implies r_2 & = \blue{r_0r_1} \end{aligned}

If A c A_c is the area of triangle of centers (blue) and A t A_t is the area of triangle of tangent points \(purple) of three mutually externally tangent circles, then

\[\begin{align} A_t & = \frac {2r_0r_1r_2}{(r_0+r_1)(r_1+r_2)(r_2+r_0)} \blue{A_c} & \small \blue{\text{Note that }A_c = \frac {(1-r_0)(1-r_1)}2} \\ & = \frac {r_0^2r_1^2(1-r_0)(1-r_1)}{(r_0+r_1)(r_1+r_0r_1)(r_0r_1+r_0)} \\ & = \frac {r_0^2r_1^2(1-r_0-r_1+r_0r_1)}{r_0r_1(r_0+r_1)(1+r_0)(1+r_1)} \\ & = \frac {r_0r_1(2r_0r_1)}{(r_0+r_1)(1+r_0+r_1+\blue{r_0r_1)}} & \small \blue{\text{Again }1-r_0-r_1 = r_0r_1} \\ & = \frac {2r_0^2r_1^2}{(r_0+r_1)(2)} = \frac {r_0^2r_1^2}{r_0+r_1} = \frac {r_0^2r_1^2}{1-r_0r_1} \end{align} \]

Putting A t = 36 1015 A_t = \dfrac {36}{1015} and rearrange:

1015 ( r 0 r 1 ) 2 + 36 r 0 r 1 36 = 0 ( 35 r 0 r 1 6 ) ( 29 r 0 r 1 + 6 ) = 0 Since r 0 r 1 > 0 r 0 r 1 = 6 35 r 0 ( 1 r 0 ) 1 + r 0 = 6 35 35 r 0 35 r 0 2 = 6 + 6 r 0 35 r 0 2 29 r 0 + 6 = 0 ( 5 r 0 2 ) ( 7 r 0 3 ) = 0 r 0 = 2 5 , 3 7 \begin{aligned} 1015(r_0r_1)^2 + 36r_0r_1 - 36 & = 0 \\ (35r_0r_1 - 6) (29r_0r_1 + 6) & = 0 & \small \blue{\text{Since }r_0r_1 > 0} \\ r_0r_1 & = \frac 6{35} \\ \frac {r_0(1-r_0)}{1+r_0} & = \frac 6{35} \\ 35r_0 - 35r_0^2 & = 6 + 6r_0 \\ 35r_0^2 - 29r_0 + 6 & = 0 \\ (5r_0-2)(7r_0-3) & = 0 \\ \implies r_0 & = \frac 25, \frac 37 \end{aligned}

Since r 0 r_0 and r 1 r_1 are interchangeable, these two values are the radii of both semicircle when A t = 36 1015 A_t = \dfrac {36}{1015} . Therefore the ratio of large radius to the small radius of the semicircles is 3 7 5 2 = 15 14 \dfrac 37 \cdot \dfrac 52 = \dfrac {15}{14} p q = 15 14 = 1 \implies p - q = 15-14 = \boxed 1 .

So cool ! :)

Valentin Duringer - 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...