Dynamic Geometry: P73

Geometry Level pending

The diagram shows a black semicircle with radius 1 1 . The yellow and the cyan semicircle are tangent to each other and internally tangent to the black semicircle. They are growing and shrinking freely so that the sum of their radius is always equal to 1 1 . We inscribe a green circle so that it's tangent to all three semicircles. Using the tangency to draw a pink triangle. When its area is equal to 4 65 \dfrac{4}{65} , the radius of the green circle can be expressed as p q \dfrac{p}{q} , where p p and q q are coprime positive integers. Find p + q \sqrt{p+q} .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 14, 2021

Let the centers of the large, yellow, and cyan semicircle, and the green circle be O O , A A , B B , and C C , and the radii of the yellow and cyan semicircles, and the green circle be r 1 r_1 , r 2 r_2 , and r r respectively. Then r 1 + r 2 = 1 r_1 + r_2 = 1 . Since A O = 1 r 1 = r 2 AO = 1-r_1 = r_2 and O B = 1 r 2 = r 1 OB = 1 - r_2 = r_1 . By cosine rule ,

B C 2 = O B 2 + O C 2 2 O B O C cos B O C Let B O C = θ . ( r 2 + r ) 2 = r 1 2 + ( 1 r ) 2 2 r 1 ( 1 r ) cos θ . . . ( 1 ) Similarly for C A 2 ( r 1 + r ) 2 = r 2 2 + ( 1 r ) 2 + 2 r 2 ( 1 r ) cos θ . . . ( 2 ) \begin{aligned} BC^2 & = OB^2 + OC^2 - 2\cdot OB \cdot OC \cdot \cos \blue{\angle BOC} & \small \blue{\text{Let }\angle BOC = \theta.} \\ (r_2+r)^2 & = r_1^2 + (1-r)^2 - 2 r_1 (1-r) \cos \blue \theta \quad ...(1) & \small \blue{\text{Similarly for }CA^2} \\ (r_1+r)^2 & = r_2^2 + (1-r)^2 + 2 r_2 (1-r) \cos \theta \quad ...(2) \end{aligned}

From r 2 ( 1 ) + r 1 ( 2 ) r_2 \cdot (1) + r_1 \cdot (2) :

r 2 ( r 2 + r ) 2 + r 1 ( r 1 + r ) 2 = r 2 r 1 2 + r 1 r 2 2 + ( r 2 + r 1 ) ( 1 r ) 2 r 1 3 + r 2 3 + 2 r ( r 1 2 + r 2 2 ) + ( r 1 + r 2 ) r 2 = r 1 r 2 ( r 1 + r 2 ) + ( r 1 + r 2 ) ( 1 2 r + r 2 ) Note that r 1 + r 2 = 1 ( r 1 + r 2 ) ( ( r 1 + r 2 ) 2 3 r 1 r 2 ) + 2 r ( ( r 1 + r 2 ) 2 2 r 1 r 2 ) + r 2 = r 1 r 2 + 1 2 r + r 2 1 3 r 1 r 2 + 2 r 4 r 1 r 2 r + r 2 = r 1 r 2 + 1 2 r + r 2 4 r 4 r 1 r 2 r = 4 r 1 r 2 r 1 r 2 = r 1 + r \begin{aligned}r_2(r_2+r)^2 + r_1(r_1+r)^2 & = r_2r_1^2 + r_1r_2^2 + (r_2+r_1)(1-r)^2 \\ r_1^3 + r_2^3 + 2r(r_1^2+r_2^2) + \blue{(r_1+r_2)}r^2 & = r_1r_2\blue{(r_1+r_2)} + \blue{(r_1+r_2)}(1 - 2r + r^2) & \small \blue{\text{Note that }r_1+r_2 = 1} \\ (r_1+r_2)((r_1+r_2)^2 - 3r_1r_2) + 2r((r_1+r_2)^2 - 2r_1r_2) + r^2 & = r_1r_2 + 1 - 2r + r^2 \\ 1 - 3r_1r_2 + 2r - 4r_1r_2r + r^2 & = r_1r_2 + 1 - 2r + r^2 \\ 4r - 4r_1r_2r & = 4r_1r_2 \\ \implies r_1r_2 & = \frac r{1+r} \end{aligned}

By Heron's formula , the area of A B C \triangle ABC , the triangle of centers of three mutually tangent (kissing) circles,

A c = ( r 1 + r 2 + r ) r 1 r 2 r = ( 1 + r ) r 2 1 + r = r Note that r 1 r 2 = r 1 + r \begin{aligned} A_c & = \sqrt{(r_1+r_2+r)\blue{r_1r_2}r} = \sqrt{(1+r) \cdot \frac {r^2}{1+r}} = r & \small \blue{\text{Note that }r_1r_2 = \frac r{1+r}} \end{aligned}

The area of triangle of tangent points of three kissing circles is given by:

A t = 2 r 1 r 2 r ( r 1 + r 2 ) ( r + r 1 ) ( r + r 2 ) A c = r 1 + r 2 r 2 1 ( r 1 r 2 + r 1 r + r 2 r + r 2 ) = 2 r 3 ( 1 + r ) ( r 1 + r + r + r 2 ) = 2 r 3 r + r + r 2 + r 2 + r 3 4 65 = 2 r 2 2 + 2 r + r 2 Putting A t = 4 65 63 r 2 4 r 4 = 0 and rearrange. ( 7 r 2 ) ( 9 r + 2 ) = 0 Since r > 0 r = 2 7 \begin{aligned} A_t & = \frac {2r_1r_2r}{(r_1+r_2)(r+r_1)(r+r_2)}A_c \\ & = \frac {\frac r{1+r} \cdot 2 r^2}{1(r_1r_2+r_1r+r_2r+ r^2)} \\ & = \frac {2r^3}{(1+r)\left(\frac r{1+r} + r + r^2\right)} \\ & = \frac {2r^3}{r+r+r^2+r^2 + r^3} \\ \implies \frac 4{65} & = \frac {2r^2}{2+2r + r^2} & \small \blue{\text{Putting }A_t = \frac 4{65}} \\ 63r^2 - 4r - 4 & = 0 & \small \blue{\text{and rearrange.}} \\ (7r-2)(9r+2) & = 0 & \small \blue{\text{Since }r > 0} \\ \implies r & = \frac 27 \end{aligned}

Therefore p + q = 2 + 7 = 3 \sqrt{p+q} = \sqrt{2+7} = \boxed 3 .

Just great, thank you.

Valentin Duringer - 2 months, 4 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...