Dynamic Geometry: P79

Geometry Level pending

The diagram shows a semicircle with radius 1 1 . A red point is moving freely on its diameter, creating two tangent semicircles (yellow and cyan). The green circle is internally tangent to the black semicircle and tangent to both semicircle. The pink circle is tangent to the green circle and both semicircles. The blue triangle is drawn using the tangency points between the pink circle and both semicircles. When the ratio of the pink circle's area to the area of the blue triangle is equal to 2929 π 1200 \dfrac{2929\pi }{1200} , the radius of the green circle can be expressed as p q \dfrac{p}{q} , where p p and q q are coprime positive integers. Find p + q \sqrt{p+q} .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 17, 2021

Let the centers of the large, yellow, and cyan semicircle, and the green circle be O O , A A , B B , and C C , and the radii of the yellow and cyan semicircles, and the green circle be r 1 r_1 , r 2 r_2 , and r 3 r_3 respectively. Then r 1 + r 2 = 1 r_1 + r_2 = 1 . Since A O = 1 r 1 = r 2 AO = 1-r_1 = r_2 and O B = 1 r 2 = r 1 OB = 1 - r_2 = r_1 . By cosine rule ,

B C 2 = O B 2 + O C 2 2 O B O C cos B O C Let B O C = θ . ( r 2 + r 3 ) 2 = r 1 2 + ( 1 r 3 ) 2 2 r 1 ( 1 r 3 ) cos θ . . . ( 1 ) Similarly for C A 2 ( r 1 + r 3 ) 2 = r 2 2 + ( 1 r 3 ) 2 + 2 r 2 ( 1 r 3 ) cos θ . . . ( 2 ) \begin{aligned} BC^2 & = OB^2 + OC^2 - 2\cdot OB \cdot OC \cdot \cos \blue{\angle BOC} & \small \blue{\text{Let }\angle BOC = \theta.} \\ (r_2+r_3)^2 & = r_1^2 + (1-r_3)^2 - 2 r_1 (1-r_3) \cos \blue \theta \quad ...(1) & \small \blue{\text{Similarly for }CA^2} \\ (r_1+r_3)^2 & = r_2^2 + (1-r_3)^2 + 2 r_2 (1-r_3) \cos \theta \quad ...(2) \end{aligned}

From r 2 ( 1 ) + r 1 ( 2 ) r_2 \cdot (1) + r_1 \cdot (2) :

r 2 ( r 2 + r 3 ) 2 + r 1 ( r 1 + r 3 ) 2 = r 2 r 1 2 + r 1 r 2 2 + ( r 2 + r 1 ) ( 1 r 3 ) 2 r 1 3 + r 2 3 + 2 r 3 ( r 1 2 + r 2 2 ) + ( r 1 + r 2 ) r 3 2 = r 1 r 2 ( r 1 + r 2 ) + ( r 1 + r 2 ) ( 1 2 r 3 + r 3 2 ) ( r 1 + r 2 ) ( ( r 1 + r 2 ) 2 3 r 1 r 2 ) + 2 r 3 ( ( r 1 + r 2 ) 2 2 r 1 r 2 ) + r 3 2 = r 1 r 2 + 1 2 r 3 + r 3 2 Note that r 1 + r 2 = 1 1 3 r 1 r 2 + 2 r 3 4 r 1 r 2 r 3 + r 3 2 = r 1 r 2 + 1 2 r 3 + r 3 2 4 r 3 4 r 1 r 2 r 3 = 4 r 1 r 2 r 3 = r 1 r 2 1 r 1 r 2 \begin{aligned}r_2(r_2+r_3)^2 + r_1(r_1+r_3)^2 & = r_2r_1^2 + r_1r_2^2 + (r_2+r_1)(1-r_3)^2 \\ r_1^3 + r_2^3 + 2r_3(r_1^2+r_2^2) + \blue{(r_1+r_2)}r_3^2 & = r_1r_2\blue{(r_1+r_2)} + \blue{(r_1+r_2)}(1 - 2r_3 + r_3^2) \\ (r_1+r_2)((r_1+r_2)^2 - 3r_1r_2) + 2r_3((r_1+r_2)^2 - 2r_1r_2) + r_3^2 & = r_1r_2 + 1 - 2r_3 + r_3^2 \quad \quad \small \blue{\text{Note that }r_1+r_2 = 1} \\ 1 - 3r_1r_2 + 2r_3 - 4r_1r_2r_3 + r_3^2 & = r_1r_2 + 1 - 2r_3 + r_3^2 \\ 4r_3 - 4r_1r_2r_3 & = 4r_1r_2 \\ \implies r_3 & = \frac {r_1r_2}{1-r_1r_2} \end{aligned}

Let the radius of the pink circle be r r . By Descartes' theorem ,

1 r = 1 r 1 + 1 r 2 + 1 r 3 + 2 1 r 1 r 2 + 1 r 2 r 3 + 1 r 3 r 1 = r 1 + r 2 r 1 r 2 + 1 r 1 r 2 1 + 2 1 r 1 r 2 + ( 1 r 1 r 2 1 ) r 1 + r 2 r 1 r 2 = 1 r 1 r 2 + 1 r 1 r 2 1 + 2 r 1 r 2 = 4 r 1 r 2 1 r 1 r 2 = 4 r 1 + r \begin{aligned} \frac 1r & = \frac 1{r_1} + \frac 1{r_2} + \frac 1{r_3} + 2 \sqrt{\frac 1{r_1r_2} + \frac 1{r_2r_3} +\frac 1{r_3r_1}} \\ & = \frac {r_1+r_2}{r_1r_2} + \frac 1{r_1r_2} - 1 + 2\sqrt{\frac 1{r_1r_2}+ \left(\frac 1{r_1r_2} -1\right) \frac {r_1+r_2}{r_1r_2}} \\ & = \frac 1{r_1r_2} + \frac 1{r_1r_2} - 1 + \frac 2{r_1r_2} = \frac 4{r_1r_2} - 1 \\ \implies r_1r_2 & = \frac {4r}{1+r} \end{aligned}

Let the center of the pink circle be D D , the two tangent with the semicircles be E E and F F , and E D F = ϕ \angle EDF = \phi . Note that ϕ \phi is obtuse. When the ratio of the area of pink circle to the area of the triangle is 2929 1200 π \frac {2929}{1200}\pi , we have:

π r 2 1 2 r 2 sin ϕ = 2929 π 1200 sin ϕ = 2400 2929 cos ϕ = 1679 2929 \frac {\pi r^2}{\frac 12 r^2 \sin \phi} = \frac {2929 \pi}{1200} \implies \sin \phi = \frac {2400}{2929} \implies \cos \phi = - \frac {1679}{2929}

By cosine rule ,

A D 2 + B D 2 2 A D B D cos ϕ = A B 2 ( r 1 + r ) 2 + ( r 2 + r ) 2 + 2 ( r 1 + r ) ( r 2 + r ) 1679 2929 = 1 2 r 1 2 + r 2 2 + 2 ( r 1 + r 2 ) r + 2 r 2 + 2 ( r 1 r 2 + 2 ( r 1 + r 2 ) r + r 2 ) 1679 2929 = 1 Note that r 1 + r 2 = 1 ( r 1 + r 2 ) 2 2 r 1 r 2 + 2 r + 2 r 2 + 2 ( r 1 r 2 + 2 r + r 2 ) 1679 2929 = 1 1 2 r 1 r 2 + 2 r + 2 r 2 + 2 ( r 1 r 2 + 2 r + r 2 ) 1679 2929 = 1 r 1 r 2 + r + r 2 + ( r 1 r 2 + 2 r + r 2 ) 1679 2929 = 0 2304 r ( 1 + r ) = 625 r 1 r 2 = 2500 r 1 + r ( 1 + r ) 2 = 625 576 r = 25 24 1 = 1 24 r 1 r 2 = 4 r 1 + r = 4 25 r 3 = r 1 r 2 1 r 1 r 2 = 4 21 \begin{aligned} AD^2 + BD^2 - 2 \cdot AD \cdot BD \cdot \cos \phi & = AB^2 \\ (r_1+r)^2 + (r_2+r)^2 + 2(r_1+r)(r_2+r) \cdot \frac {1679}{2929} & = 1^2 \\ r_1^2 + r_2^2 + 2\blue{(r_1+r_2)}r + 2r^2 + 2(r_1r_2 + 2\blue{(r_1+r_2)}r + r^2) \cdot \frac {1679}{2929} & = 1 & \small \blue {\text{Note that }r_1+r_2 = 1} \\ (r_1+r_2)^2 - 2r_1r_2 + 2r + 2r^2 + 2(r_1r_2 + 2r + r^2) \cdot \frac {1679}{2929} & = 1 \\ 1 - 2r_1r_2 + 2r + 2r^2 + 2(r_1r_2 + 2r + r^2) \cdot \frac {1679}{2929} & = 1 \\ - r_1r_2 + r + r^2 + (r_1r_2 + 2r + r^2) \cdot \frac {1679}{2929} & = 0 \\ 2304r(1+r) & = 625r_1r_2 = \frac {2500r}{1+r} \\ (1+r)^2 & = \frac {625}{576} \\ \implies r & = \frac {25}{24} - 1 = \frac 1{24} \\ r_1r_2 & = \frac {4r}{1+r} = \frac 4{25} \\ \implies r_3 & = \frac {r_1r_2}{1-r_1r_2} = \frac 4{21} \end{aligned}

Therefore p + q = 4 + 21 = 5 \sqrt{p+q} = \sqrt{4+21} = \boxed 5 .

Very nice solution !

Valentin Duringer - 2 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...