Dynamic Geometry: P82

Geometry Level 4

The diagram shows an orange semicircle with radius 1 1 . A red point is moving freely on its diameter, creating two tangent semicircles (green and cyan). The pink semicircle is internally tangent to the orange semicircle and tangent to both semicircles. We use the three centers to draw a black triangle. When the product of its inradius and its circumradius is equal to 297 1850 \dfrac{297}{1850} , the radius of the pink semicircle can be expressed as p q \dfrac{p}{q} , where p p and q q are coprime positive integers. Find p + q p+q .


The answer is 37.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 18, 2021

Let the centers of the unit, cyan, green, and pink semicircles be O O , A A , B B , and C C , their radii 1 1 , r 1 r_1 , r 2 r_2 , and r r , Then r 1 + r 2 = 1 r_1 + r_2 = 1 , O A = 1 r 1 = r 2 OA = 1-r_1 = r_2 , and O B = 1 r 2 = r 1 OB = 1-r_2 = r_1 .

Let diameters D E DE and F G FG through centers C C and O O respectively. By intersecting chords theorem ,

D C C E = F C C G r 2 = ( 1 k ) ( 1 + k ) = 1 k 2 k 2 = 1 r 2 \begin{aligned} DC\cdot CE & = FC \cdot CG \\ r^2 & = (1-k)(1+k) = 1 - k^2 \\ \implies k^2 & = 1 - r^2 \end{aligned}

Let C O B = θ \angle COB = \theta . By cosine rule ,

{ B C 2 = O B 2 + O C 2 2 O B O C cos θ C A 2 = O A 2 + O C 2 + 2 O A O C cos θ { ( r 2 + r ) 2 = r 1 2 + ( 1 r 2 ) 2 r 1 1 r 2 cos θ . . . ( 1 ) ( r 1 + r ) 2 = r 2 2 + ( 1 r 2 ) + 2 r 2 1 r 2 cos θ . . . ( 2 ) r 2 × ( 1 ) + r 1 × ( 2 ) : r 1 3 + r 2 3 + 2 ( r 1 2 + r 2 2 ) r + ( r 1 + r 2 ) r 2 = r 1 r 2 ( r 1 + r 2 ) + ( r 1 + r 2 ) ( 1 r 2 ) ( r 1 + r 2 ) ( ( r 1 + r 2 ) 2 3 r 1 r 2 ) + 2 ( ( r 1 + r 2 ) 2 2 r 1 r 2 ) r + r 2 = r 1 r 2 + 1 r 2 Note that r 1 + r 2 = 1 1 3 r 1 r 2 + 2 r 4 r 1 r 2 r + r 2 = r 1 r 2 + 1 r 2 r + r 2 = 2 r 1 r 2 + 2 r 1 r 2 r r = 2 r 1 r 2 \begin{cases} BC^2 = OB^2 + OC^2 - 2 \cdot OB \cdot OC \cdot \cos \theta \\ CA^2 = OA^2 + OC^2 + 2 \cdot OA \cdot OC \cdot \cos \theta \end{cases} \\ \begin{cases} (r_2+r)^2 = r_1^2 + (1-r^2) - 2r_1\sqrt{1-r^2} \cos \theta & ...(1) \\ (r_1+r)^2 = r_2^2 + (1-r^2) + 2r_2\sqrt{1-r^2} \cos \theta & ...(2) \end{cases} \\ \begin{aligned} r_2 \times (1) + r_1 \times (2): \quad r_1^3+r_2^3 + 2(r_1^2+r_2^2)r + \blue{(r_1+r_2)} r^2 & = r_1r_2 \blue{(r_1+r_2)} +\blue{(r_1+r_2)}(1-r^2) \\ \blue{(r_1+r_2)}(\blue{(r_1+r_2)}^2-3r_1r_2) + 2(\blue{(r_1+r_2)}^2 - 2r_1r_2)r + r^2 & = r_1r_2 + 1 - r^2 \quad \quad \small \blue{\text{Note that }r_1+r_2 = 1} \\ 1 - 3r_1r_2 + 2r - 4r_1r_2r + r^2 & = r_1r_2 + 1 - r^2 \\ r + r^2 & = 2r_1r_2 + 2r_1r_2r \\ \implies r & = 2r_1r_2 \end{aligned}

When the product of the inradius r i r_i and the circumradius R R of the A B C \triangle ABC :

r i R = 297 1850 A r 1 + r 2 + r ( r 1 + r ) ( r 2 + r ) ( r 1 + r 2 ) 4 A = 297 1850 where A is the area of the A B C . ( r 1 + r ) ( r 2 + r ) r 1 + r 2 + r = 594 925 925 ( r 1 r 2 + ( r 1 + r 2 ) r + r 2 ) = 594 ( 1 + r ) 925 ( r 2 + r + r 2 ) = 594 + 594 r 1850 r 2 + 1587 r 1188 = 0 ( 25 r 12 ) ( 74 r + 99 ) = 0 Since r > 0 r = 12 25 \begin{aligned} r_i R & = \frac {297}{1850} \\ \frac \blue A {r_1+r_2+r} \cdot \frac {(r_1+r)(r_2+r)(r_1+r_2)}{4 \blue A} & = \frac {297}{1850} & \small \blue{\text{where }A \text{ is the area of the }\triangle ABC.} \\ \frac {(r_1+r)(r_2+r)}{r_1+r_2 + r} & = \frac {594}{925} \\ 925(r_1r_2 + (r_1+r_2)r + r^2) & = 594 (1+r) \\ 925 \left(\frac r2 + r + r^2 \right) & = 594 + 594 r \\ 1850r^2 + 1587r - 1188 & = 0 \\ (25r-12)(74r+99) & = 0 & \small \blue{\text{Since }r >0} \\ \implies r & = \frac {12}{25} \end{aligned}

Therefore p + q = 12 + 25 = 37 p+q=12+25 = \boxed{37} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...