Dynamic Geometry: P84

Geometry Level 5

The diagram shows a unit square and a unit quadrant. The yellow circle is any circle which is always tangent to a side of the square and the quadrant. A blue triangle is drawn using the center of a yellow circle and the tangency point between a yellow circle, the square and the quadrant. When the triangle's inradius is equal to 7 600 \dfrac{7}{600} , the radius of a yellow circle can be expressed as p q \dfrac{p}{q} , where p p and q q are coprime positive integers. Find p + q \sqrt{p}+\sqrt{q} .


The answer is 31.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 19, 2021

Let the square be A B C D ABCD , the center of the circle be O O , its radius r r and two contact points E E and F F . Let O A B = θ \angle OAB = \theta .

We note that

A O cos θ + O F = A B ( 1 + r ) cos θ + r = 1 r = 1 cos θ 1 + cos θ Let t = tan θ 2 = 1 1 t 2 1 + t 2 1 + 1 t 2 1 + t 2 = t 2 \begin{aligned} AO \cdot \cos \theta + OF & = AB \\ (1+r) \cos \theta + r & = 1 \\ \implies r & = \frac {1-\cos \theta}{1+\cos \theta} & \small \blue{\text{Let }t = \tan \frac \theta 2} \\ & = \frac {1-\frac {1-t^2}{1+t^2}}{1+\frac {1-t^2}{1+t^2}} = t^2 \end{aligned}

The inradius of a triangle is given by r i = A s r_i = \dfrac As , where A A is the area and semi-perimeter of the triangle. Since O A B = θ \angle OAB = \theta , E O F = 18 0 θ \angle EOF = 180^\circ - \theta , and since E O F \triangle EOF is isosceles, O E F = O F E = θ 2 \angle OEF=OFE = \dfrac \theta 2 and its inradius is:

r i = A s = r 2 sin θ 2 cos θ 2 r + r cos θ 2 = r sin θ 2 cos θ 2 1 + cos θ 2 Note that r = t 2 = tan 2 θ 2 = sin 2 θ 2 cos 2 θ 2 sin θ 2 cos θ 2 1 + cos θ 2 = 1 cos 2 θ 2 cos θ 2 sin θ 2 1 + cos θ 2 = sin θ 2 cos θ 2 ( 1 cos θ 2 ) = tan θ 2 ( 1 cos θ 2 ) Since 1 + tan 2 ϕ = sec 2 ϕ r i = t ( 1 1 1 + t 2 ) \begin{aligned} r_i & = \dfrac As = \frac {r^2 \sin \frac \theta 2 \cos \frac \theta 2}{r + r \cos \frac \theta 2} = \frac {r \sin \frac \theta 2 \cos \frac \theta 2}{1 + \cos \frac \theta 2} & \small \blue{\text{Note that }r = t^2 = \tan^2 \frac \theta 2} \\ & = \frac {\sin^2 \frac \theta 2}{\cos^2 \frac \theta 2} \cdot \frac {\sin \frac \theta 2 \cos \frac \theta 2}{1 + \cos \frac \theta 2} = \frac {1-\cos^2 \frac \theta 2}{\cos \frac \theta 2} \cdot \frac {\sin \frac \theta 2}{1 + \cos \frac \theta 2} \\ & = \frac {\sin \frac \theta 2}{\cos \frac \theta 2} \left(1 - \cos \frac \theta 2 \right) = \tan \frac \theta 2 \left(1 - \blue{\cos \frac \theta 2} \right) & \small \blue{\text{Since }1 + \tan^2 \phi = \sec^2 \phi} \\ \implies r_i & = t \left( 1 - \frac 1{\sqrt{1+t^2}} \right) \end{aligned}

When r i = 7 600 r_i = \dfrac 7{600} :

t ( 1 1 1 + t 2 ) = 7 600 600 t 7 = 600 t 1 + t 2 ( 1 + t 2 ) ( 600 t 7 ) 2 = 60 0 2 t 2 360000 t 4 8400 t 3 + 49 t 2 8400 t + 49 = 0 ( 24 t 7 ) ( 15000 t 3 + 4025 t 2 + 1176 t 7 ) = 0 The other irrational root t = 7 24 0.0058334 is too small. r = t 2 = 7 2 2 4 2 \begin{aligned} t \left( 1 - \frac 1{\sqrt{1+t^2}} \right) & = \frac 7{600} \\ 600t - 7 & = \frac {600t}{\sqrt{1+t^2}} \\ (1+t^2)(600t-7)^2 & = 600^2t^2 \\ 360000t^4 - 8400t^3 + 49t^2 - 8400t + 49 & = 0 \\ (24t-7)(15000t^3+4025t^2+1176t-7) & = 0 & \small \blue{\text{The other irrational root}} \\ \implies t & = \frac 7{24} & \small \blue{\approx 0.0058334 \text{ is too small.}} \\ \implies r & = t^2 = \frac {7^2}{24^2} \end{aligned}

Therefore p + q = 7 + 24 = 31 \sqrt p + \sqrt q = 7 + 24 = \boxed{31} .

David Vreken
Mar 23, 2021

Label the diagram as follows, and let the yellow circle have a radius of R R :

Then A C = 1 + R AC = 1 + R and A B = 1 R AB = 1 - R , and letting θ = A C B \theta = \angle ACB , from A B C \triangle ABC , sin θ = A B A C = 1 R 1 + R \sin \theta = \cfrac{AB}{AC} = \cfrac{1 - R}{1 + R} , so cos θ = 1 sin 2 θ = 2 R 1 + R \cos \theta = \sqrt{1 - \sin^2 \theta} = \cfrac{2\sqrt{R}}{1 + R} .

Let t = D C F = E C F t = \angle DCF = \angle ECF . Then from C F E \triangle CFE , C F = R cos t CF = R \cos t and F E = R sin t FE = R \sin t , so that the inradius of C D E \triangle CDE is r = 2 A C D E P C D E = 2 1 2 D E C F C D + C E + D E = 2 R sin t R cos t R + R + 2 R sin t = R sin 2 t 2 ( sin t + 1 ) r = \cfrac{2A_{\triangle CDE}}{P_{\triangle CDE}} = \cfrac{2 \cdot \frac{1}{2} \cdot DE \cdot CF}{CD + CE + DE} = \cfrac{2R \sin t \cdot R \cos t}{R + R + 2R\sin t} = \cfrac{R \sin 2t}{2(\sin t + 1)} .

But 2 t = D C E = A C B + B C E = θ + 90 ° 2t = \angle DCE = \angle ACB + \angle BCE = \theta + 90° , so sin 2 t = sin ( θ + 90 ° ) = cos θ = 2 R 1 + R \sin 2t = \sin (\theta + 90°) = \cos \theta = \cfrac{2\sqrt{R}}{1 + R} , and sin t = sin 1 2 ( θ + 90 ° ) = 1 2 ( 1 cos ( θ + 90 ° ) ) = 1 2 ( 1 + sin θ ) = 1 2 ( 1 + 1 R 1 + R ) = 1 1 + R \sin t = \sin \frac{1}{2}(\theta + 90°) = \sqrt{\frac{1}{2}(1 - \cos(\theta + 90°))} = \sqrt{\frac{1}{2}(1 + \sin \theta)} = \sqrt{\frac{1}{2}\bigg(1 + \cfrac{1 - R}{1 + R}\bigg)} = \cfrac{1}{\sqrt{1 + R}} .

Substituting r = 7 600 r = \cfrac{7}{600} , sin 2 t = 2 R 1 + R \sin 2t = \cfrac{2\sqrt{R}}{1 + R} , and sin t = 1 1 + R \sin t = \cfrac{1}{\sqrt{1 + R}} into r = R sin 2 t 2 ( sin t + 1 ) r = \cfrac{R \sin 2t}{2(\sin t + 1)} gives 7 600 = R 2 R 1 + R 2 ( 1 1 + R + 1 ) = R R 1 + R + 1 + R \cfrac{7}{600} = \cfrac{R \cdot \frac{2\sqrt{R}}{1 + R}}{2(\frac{1}{\sqrt{1 + R}} + 1)} = \cfrac{R\sqrt{R}}{\sqrt{1 + R} + 1 + R} , which solves to R = 49 576 R = \cfrac{49}{576} .

Therefore, p = 49 p = 49 , q = 576 q = 576 , and p + q = 7 + 24 = 31 \sqrt{p} + \sqrt{q} = 7 + 24 = \boxed{31} .

Hi there, thank you for posting !

Valentin Duringer - 2 months, 2 weeks ago

@Valentin Duringer You really are going to post 100 questions in these series !!! (You really go on your word), Thank you so much for all these questions. A small request can you make the P100 a really difficult one.

Omek K - 2 months, 2 weeks ago

Log in to reply

Ok, ok friend, you asked for it, I am cooking something special for you...

Valentin Duringer - 2 months, 2 weeks ago

Log in to reply

Thank you !!!!

Omek K - 2 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...