Dynamic Geometry: P86

Geometry Level 4

The diagram shows a red circle with radius 25 25 and a purple circle with radius 16 16 which is internally tangent to the orange circle. The orange circle is moving freely so it's internally tangent to the red circle and tangent to the purple circle at any moment. Using its center and the tangency points, we draw a green triangle. The maximum value of the sine of the triangle's largest angle can be expressed as p q \dfrac{p}{q} , where p p and q q are coprime positive integers. Find q p \sqrt{q-p} .


The answer is 31.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 20, 2021

Label the centers of large, purple, and orange circles O O , P P , and Q Q respectively, and the two tangent points of the orange circle with the other two circles A A and B B , Let the radius of of the orange circle be r r and O P Q = θ \angle OPQ = \theta . By cosine rule ,

O Q 2 = O P 2 + P Q 2 2 O P P Q cos O P Q ( 25 r ) 2 = 9 2 + ( 16 + r ) 2 2 9 ( 16 + r ) cos θ r = 144 ( 1 + cos θ ) 41 9 cos θ \begin{aligned} OQ^2 & = OP^2 + PQ^2 - 2\cdot OP \cdot PQ \cdot \cos \angle OPQ \\ (25-r)^2 & = 9^2 + (16+r)^2 - 2\cdot 9 (16+r) \cos \theta \\ \implies r & = \frac {144(1+\cos \theta)}{41-9 \cos \theta} \end{aligned}

We note that the largest sine value of A B O \triangle ABO comes from the largest angle A O B \angle AOB , which is 18 0 P Q O 180^\circ - \angle PQO . Let P Q O = ϕ \angle PQO = \phi . Then we need to find the maximum value of sin ( 18 0 ϕ ) = sin ϕ \sin (180^\circ - \phi) = \sin \phi . By sine rule , we have:

sin ϕ 9 = sin θ 25 r sin ϕ = 9 sin θ 25 144 ( 1 + cos θ ) 41 9 cos θ max ( sin ϕ ) = 720 1681 \begin{aligned} \frac {\sin \phi}9 & = \frac {\sin \theta}{25-r} \\ \implies \sin \phi & = \frac {9 \sin \theta}{25 - \frac {144(1+\cos \theta)}{41-9\cos \theta}} \\ \max (\sin \phi) & = \frac {720}{1681} \end{aligned}

Therefore q p = 1681 720 = 31 \sqrt{q-p} = \sqrt{1681-720} = \boxed{31} .

Nice job sir.

Valentin Duringer - 2 months, 3 weeks ago
David Vreken
Mar 23, 2021

Label the diagram as follows, with P P , Q Q , and O O as the centers of the circles, and let x x be the radius of the orange circle and θ = P Q O \theta = \angle PQO :

Then P Q = A Q + P Q = x + 16 PQ = AQ + PQ = x + 16 , O Q = O B B Q = 25 x OQ = OB - BQ = 25 - x , and O P = 25 16 = 9 OP = 25 - 16 = 9 .

By the law of cosines on O P Q \triangle OPQ , cos θ = P Q 2 + O Q 2 O P 2 2 P Q O Q = ( x + 16 ) 2 + ( 25 x ) 2 + 9 2 2 ( x + 16 ) ( 25 x ) = x 2 9 x + 400 x 2 + 9 x + 400 \cos \theta = \cfrac{PQ^2 + OQ^2 - OP^2}{2 \cdot PQ \cdot OQ} = \cfrac{(x + 16)^2 + (25 - x)^2 + 9^2}{2(x + 16)(25 - x)} = \cfrac{x^2 - 9x + 400}{-x^2 + 9x + 400} .

So sin A Q B = sin θ = 1 cos 2 θ = 1 ( x 2 9 x + 400 x 2 + 9 x + 400 ) 2 = 40 x ( 9 x ) x 2 + 9 x + 400 \sin \angle AQB = \sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \bigg(\cfrac{x^2 - 9x + 400}{-x^2 + 9x + 400}\bigg)^2} = \cfrac{40\sqrt{x(9 - x)}}{-x^2 + 9x + 400} .

The maximum sine occurs when d y d x = 20 ( 9 2 x ) ( x 2 9 x + 400 ) x ( 9 x ) ( x 2 + 9 x + 400 ) 2 = 0 \cfrac{dy}{dx} = \cfrac{20(9 - 2x)(x^2 - 9x + 400)}{\sqrt{x(9 - x)}(-x^2 + 9x + 400)^2} = 0 , which is when 9 2 x = 0 9 - 2x = 0 or x = 9 2 x = \cfrac{9}{2} .

At this value of x = 9 2 x = \cfrac{9}{2} , sin θ = 40 x ( 9 x ) x 2 + 9 x + 400 = 40 9 2 ( 9 9 2 ) ( 9 2 ) 2 + 9 9 2 + 400 = 720 1681 \sin \theta = \cfrac{40\sqrt{x(9 - x)}}{-x^2 + 9x + 400} = \cfrac{40\sqrt{\frac{9}{2}(9 - \frac{9}{2})}}{-(\frac{9}{2})^2 + 9 \cdot \frac{9}{2} + 400} = \cfrac{720}{1681} , so p = 720 p = 720 , q = 1681 q = 1681 , and q p = 961 = 31 \sqrt{q - p} = \sqrt{961} = \boxed{31} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...