Dynamic Geometry: P93

Geometry Level 5

The diagram shows a cyan circle with radius 4 4 and a green circle with radius 1 1 tangent to each other and tangent to a black horizontal line. The yellow circle moves freely so it is tangent to both circles at any moment. Its center bounces between two vertical segments (red and purple). At both segments, the yellow circle is tangent to the black horizontal line. The center of the yellow circle traces a locus (blue curve). The area bounded by both vertical segments, the horizontal line and the blue curve can be expressed as:

p q ln ( q ) \dfrac{p}{q}-\ln \left(q\right)

where p p and q q are coprime positive integers. Find p + q p+q .


The answer is 527.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 24, 2021

Let the x x -axis be the straight line tangent to both cyan and green circles. And the y y -axis be in the middle of the center O O of the cyan circle and the center Q Q of the green circle, and an arbitrary point on the locus, the center of the yellow circle, be P ( x , y ) P(x,y) while its radius is r r .

Then by cosine rule ,

P Q 2 = O P 2 + O Q 2 2 O P O Q cos P O Q ( r + 1 ) 2 = ( r + 4 ) 2 + 5 2 10 O P cos P O Q O P cos P O Q = ( r + 4 ) 2 + 5 2 ( r + 1 ) 2 10 = 3 r + 20 5 \begin{aligned} PQ^2 & = OP^2+OQ^2 - 2\cdot OP \cdot OQ \cdot \cos \angle POQ \\ (r+1)^2 & = (r+4)^2 + 5^2 - 10\cdot OP \cos \angle POQ \\ \implies OP \cdot \cos \angle POQ & = \frac {(r+4)^2 + 5^2 - (r+1)^2}{10} = \frac {3r+20}5 \end{aligned}

Note that O P cos P O Q = O N OP \cdot \cos \angle POQ = ON is the projection of O P OP on O Q OQ . Also note that the gradient of O N ON is tan 3 4 - \tan \frac 34 and the coordinates of N ( x N , y N ) N(x_N, y_N) are x N = 4 5 O N 2 = 12 r + 30 25 x_N = \dfrac 45 \cdot ON - 2 = \dfrac {12r+30}{25} and y N = 4 3 5 O N = 40 9 r 25 y_N = 4 - \dfrac 35 \cdot ON = \dfrac {40-9r}{25} .

By Pythagorean theorem ,

P N 2 = O P 2 O N 2 = ( r + 4 ) 2 ( 3 r + 20 5 ) 2 = 16 r 2 + 80 r 25 P N = 4 r 2 + 5 r 5 = 2 tan ϕ tan ϕ = 2 r 2 + 5 r 5 sec 2 ϕ = tan 2 ϕ + 1 = 4 r 2 + 20 r + 25 25 = ( 2 r + 5 5 ) 2 sec ϕ = 2 r + 5 5 x N = 12 r + 30 25 = 6 5 2 r + 5 5 = 6 5 sec ϕ y N = 40 9 r 25 = 40 25 9 10 2 r + 5 5 + 45 50 = 5 2 9 10 sec ϕ \begin{aligned} PN^2 & = OP^2 - ON^2 = (r+4)^2 - \left(\frac {3r+20}5 \right)^2 = \frac {16r^2+80r}{25} \\ \implies PN & = \frac {4\sqrt{r^2+5r}}5 = 2 \blue{\tan \phi} \\ \implies \tan \phi & = \frac {2\sqrt{r^2+5r}}5 \\ \sec^2 \phi & = \tan^2 \phi + 1 = \frac {4r^2+20r + 25}{25} = \left(\frac {2r+5}5 \right)^2 \\ \implies \sec \phi & = \frac {2r+5}5 \\ x_N & = \frac {12r+30}{25} = \frac 65 \cdot \frac {2r+5}5 = \frac 65 \sec \phi \\ y_N & = \dfrac {40-9r}{25} = \frac {40}{25} - \frac 9{10} \cdot \frac {2r+5}5 + \frac {45}{50} = \frac 52 - \frac 9{10} \sec \phi \end{aligned}

The coordinates of P ( x , y ) P(x,y) :

{ x = x N + 3 5 P N = 6 5 sec ϕ + 6 5 tan ϕ y = y N + 4 5 P N = 5 2 9 10 sec ϕ + 8 5 tan ϕ { 3 x + 4 y = 10 + 10 tan ϕ tan ϕ = 3 x + 4 y 10 10 8 x 6 y = 15 + 15 sec ϕ sec ϕ = 8 x 6 y + 15 15 1 + tan 2 ϕ = sec 2 ϕ 1 + ( 3 x + 4 y 10 10 ) 2 = ( 8 x 6 y 15 15 ) 2 1 + 9 x 2 + 24 x y + 16 y 2 60 x 80 y + 100 100 = 64 x 2 96 x y + 36 y 2 + 240 x 180 y + 225 225 7 x 2 24 x y + 60 x 36 = 0 y = 7 24 x + 5 2 3 2 x \begin{cases} x = x_N + \dfrac 35 \cdot PN = \dfrac 65 \sec \phi + \dfrac 65 \tan \phi \\ y = y_N + \dfrac 45 \cdot PN = \dfrac 52 - \dfrac 9{10} \sec \phi + \dfrac 85 \tan \phi \end{cases} \\ \begin{cases} 3x + 4y & = 10 + 10 \tan \phi & \implies \tan \phi = \dfrac {3x+4y-10}{10} \\ 8x - 6y & = - 15 + 15 \sec \phi & \implies \sec \phi = \dfrac {8x-6y+15}{15} \end{cases} \\ \begin{aligned} 1 + \tan^2 \phi & = \sec^2 \phi \\ 1 + \left(\frac {3x+4y-10}{10}\right)^2 & = \left(\frac {8x-6y-15}{15}\right)^2 \\ 1 + \frac {9x^2+24xy+16y^2-60x-80y+100}{100} & = \frac {64x^2-96xy+36y^2+240x-180y+225}{225} \\ \implies 7x^2-24xy+60x-36 & = 0 \\ \implies y & = \frac 7{24}x + \frac 52 - \frac 3{2x} \end{aligned}

The locus is part of a hyperbola. Note y y of the locus is r r of the yellow circle, The smallest radius (red vertical line) is given by 1 r min = 1 1 + 1 4 = 3 2 r min = 4 9 \dfrac 1{\sqrt r_{\min}} = \dfrac 1{\sqrt 1} + \dfrac 1{\sqrt 4} = \frac 32 \implies r_{\min} = \dfrac 49 . From 7 24 x + 5 2 3 2 x = 4 9 x min = 2 3 \dfrac 7{24}x + \dfrac 52 - \dfrac 3{2x} = \dfrac 49 \implies x_{\min} = \dfrac 23 . The largest radius (purple vertical line) r max = 4 r_{\max} = 4 , when the yellow circle is congruent with the cyan circle; and the x max = 6 x_{\max} = 6 . The area under the locus is

A = 2 3 6 y d x = 2 3 6 7 24 x + 5 2 3 2 x d x = 7 48 x 2 + 5 2 x 3 2 ln x 2 3 6 = 500 27 ln 27 \begin{aligned} A & = \int_\frac 23^6 y \ dx \\ & = \int_\frac 23^6 \frac 7{24}x + \frac 52 - \frac 3{2x} \ dx \\ & = \frac 7{48}x^2 + \frac 52 x - \frac 32 \ln x \ \bigg|_\frac 23^6 \\ & = \frac {500}{27} - \ln 27 \end{aligned}

Therefore p + q = 500 + 27 = 527 p+q = 500+27 = \boxed{527} .

Im proud of this problem. Great solution.

Valentin Duringer - 2 months, 2 weeks ago

Log in to reply

The toughest so far.

Chew-Seong Cheong - 2 months, 2 weeks ago
Diogo Marques
Mar 25, 2021

The center (x,y) and radius r r of the moving circle, is governed by these two equations ( x 4 ) 2 + ( y 4 ) 2 = ( 4 + r ) 2 (x-4)^{2}+(y-4)^{2}=(4+r)^{2} and ( x 8 ) 2 + ( y 1 ) 2 = ( 1 + r ) 2 (x-8)^{2}+(y-1)^{2}=(1+r)^{2} .

y y solves to 7 x 2 + 24 x + 144 144 24 x = 7 x 24 3 2 ( x 6 ) + 3 4 \frac{-7x^{2}+24x+144}{144-24x} = \frac{7x}{24}-\frac{3}{2(x-6)}+\frac{3}{4}

20 3 12 f ( x ) d x = 500 27 ln 27 \int_ \frac{20}{3}^{12} f(x)dx = \frac{500}{27}-\ln 27

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...