Dynamic Geometry: P98

Geometry Level pending

The diagram shows a black semicircle. The cyan and green semicircles are tangent to each other and internally tangent to the black semicircle. They are growing and shrinking freely so that the sum of their radius is always equal to the black semicircle's radius. We draw a red vertical segment using their tangency point. At last we inscribed two yellow circles so they are tangent to the red line, to the black semicircle and to one of the two bottom semicircles. Using the tagency points, we draw a purple triangle and a blue triangle. When the ratio of the purple triangle's area to the area of the blue triangle is equal to 2328 1565 \dfrac{2328}{1565} , the ratio of the cyan semicircle's radius to the radius of the green radius can be expressed as p q \dfrac{p}{q} , where p p and q q are coprime positive integers. Find q p \sqrt{q}-\sqrt{p} .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 15, 2021

This is probably the last problem of a series started from Dynamic Geometry: P32 by @Valentin Duringer . There are many calculations in the earlier problems of the series are necessary to solve this problem. To shorten the solution to this problem without sacrificing the details, I have compiled all the calculations for those who wants to referred to in Dynamic Geometry: P32 Series .

Let the radii of the large, cyan and green semicircles be 1 1 , r 1 r_1 , and r 2 r_2 , the three vertices of the triangles in the left and right yellow circles be S 1 S_1 , S 2 S_2 , and S 3 S_3 , and T 1 T_1 , T 2 T_2 , and T 3 T_3 respectively. From the calculations in the compilation, the coordinates of the vertices of the two triangles are:

{ S 1 ( 2 r 2 r 1 1 + r 2 , 2 r 1 r 2 1 + r 2 ) , T 1 ( 2 r 1 r 2 1 + r 1 , 2 r 2 r 1 1 + r 1 ) S 2 ( r 2 r 1 , 2 r 1 r 2 ) , T 2 ( r 1 r 2 , 2 r 2 r 1 ) S 3 ( r 2 r 1 2 1 r 1 r 2 , 2 r 1 r 2 1 r 1 r 2 ) , T 3 ( r 1 r 2 2 1 r 1 r 2 , 2 r 2 r 1 1 r 1 r 2 ) \begin{cases} S_1 \left(\dfrac {2r_2-r_1}{1+r_2}, \dfrac {2r_1\sqrt{r_2}}{1+r_2}\right), & T_1 \left(\dfrac {2r_1-r_2}{1+r_1}, \dfrac {2r_2\sqrt{r_1}}{1+r_1} \right) \\ S_2 \left(r_2 - r_1, 2r_1\sqrt{r_2} \right), & T_2 \left(r_1 - r_2, 2r_2\sqrt{r_1} \right) \\ S_3 \left(\dfrac {r_2-r_1^2}{1-r_1r_2}, \dfrac {2r_1\sqrt{r_2}}{1-r_1r_2} \right), & T_3 \left(\dfrac {r_1-r_2^2}{1-r_1r_2}, \dfrac {2r_2\sqrt{r_1}}{1-r_1r_2} \right) \end{cases}

Let r = r 1 r = r_1 . Since r 1 + r 2 = 1 r 2 = 1 r 1 = 1 r r_1+r_2 = 1 \implies r_2 = 1 - r_1 = 1 - r . Then the coordinates of the two triangles become:

{ S 1 ( 2 3 r 2 r , 2 r 1 r 2 r ) , T 1 ( 3 r 1 1 + r , 2 ( 1 r ) r 1 + r ) S 2 ( 1 2 r , 2 r 1 r ) , T 2 ( 2 r 1 , 2 ( 1 r ) r ) S 3 ( 1 r r 2 1 r + r 2 , 2 r 1 r 1 r + r 2 ) , T 3 ( r ( 1 r ) 2 1 r + r 2 , 2 ( 1 r ) r 1 r + r 2 ) \begin{cases} S_1 \left(\dfrac {2 - 3r}{2-r}, \dfrac {2r\sqrt{1-r}}{2-r}\right), & T_1 \left(\dfrac {3r-1}{1+r}, \dfrac {2(1-r) \sqrt r}{1+r} \right) \\ S_2 \left(1-2r, 2r\sqrt{1-r} \right), & T_2 \left(2r-1, 2(1-r)\sqrt r \right) \\ S_3 \left(\dfrac {1-r-r^2}{1-r+r^2}, \dfrac {2r\sqrt{1-r}}{1-r+r^2} \right), & T_3 \left(\dfrac {r-(1-r)^2}{1-r+r^2}, \dfrac {2(1-r) \sqrt r}{1-r+r^2} \right) \end{cases}

By shoelace formula , the areas of the two triangles are:

{ A S = 1 2 1 1 1 2 3 r 2 r 1 2 r 1 r r 2 1 r + r 2 2 r 1 r 2 r 2 r 1 r 2 r 1 r 1 r + r 2 = 2 r 2 ( 1 r ) 5 2 ( 2 r ) ( r 2 r + 1 ) A T = 1 2 1 1 1 3 r 1 1 + r 2 r 1 r ( 1 r ) 2 1 r + r 2 2 ( 1 r ) r 1 + r 2 ( 1 r ) r 2 ( 1 r ) r 1 r + r 2 = 2 r 5 2 ( 1 r ) 2 1 + r 3 \begin{cases} A_S = \dfrac 12 \left| \begin{vmatrix} 1 & 1 & 1 \\ \dfrac {2 - 3r}{2-r} & 1-2r & \dfrac {1-r-r^2}{1-r+r^2} \\ \dfrac {2r\sqrt{1-r}}{2-r} & 2r\sqrt{1-r} & \dfrac {2r\sqrt{1-r}}{1-r+r^2} \end{vmatrix} \right| = \dfrac {2r^2(1-r)^\frac 52}{(2-r)(r^2-r+1)} \\ A_T = \dfrac 12 \left| \begin{vmatrix} 1 & 1 & 1 \\ \dfrac {3r-1}{1+r} & 2r-1 & \dfrac {r-(1-r)^2}{1-r+r^2} \\ \dfrac {2(1-r) \sqrt r}{1+r} & 2(1-r)\sqrt r & \dfrac {2(1-r) \sqrt r}{1-r+r^2} \end{vmatrix} \right| = \dfrac {2r^\frac 52(1-r)^2} {1+r^3} \end{cases}

When A S A T = 2328 1565 \dfrac {A_S}{A_T} = \dfrac {2328}{1565} ,

2 r 2 ( 1 r ) 5 2 ( 1 + r 3 ) 2 r 5 2 ( 1 r ) 2 ( r 2 ) ( r 2 r + 1 ) = 2328 1565 ( 1 + r ) 1 r ( 2 r ) r = 2328 1565 \begin{aligned} \frac {2r^2(1-r)^\frac 52(1+r^3)}{2r^\frac 52(1-r)^2(r-2)(r^2-r+1)} & = \frac {2328}{1565} \\ \frac {(1+r)\sqrt{1-r}}{(2-r)\sqrt r} & = \frac {2328}{1565} \end{aligned}

Solving the equation above, we get r = r 1 = 25 169 r 2 = 1 25 169 = 144 169 r=r_1 = \dfrac {25}{169} \implies r_2 = 1 - \dfrac {25}{169} = \dfrac {144}{169} . Therefore r 1 r 2 = 25 144 \dfrac {r_1}{r_2} = \dfrac {25}{144} q p = 12 5 = 7 \implies \sqrt q - \sqrt p = 12 - 5 = \boxed 7 .

Great work!

Valentin Duringer - 1 month, 4 weeks ago

Log in to reply

Which other problems need solutions

Chew-Seong Cheong - 1 month, 3 weeks ago

@Chew-Seong Cheong P101 and P107

Valentin Duringer - 1 month, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...