Dynamics Snapshot

A bead of mass 1 kg \SI{1}{kg} is attached to a smooth wire in the shape of the curve y = x 2 y = x^2 . One end of a spring is attached to the bead, and the other end is fixed at the origin. The spring constant k = 5 N / m k = \SI{5}{N/m} and the spring's un-stretched length is zero.

There is an ambient downward gravitational acceleration of 10 m / s 2 10\SI{\ }{m/s^2} .

At a particular instant in time, the horizontal position and horizontal velocity are the following: x = 1 2 m x ˙ = 3 m / s . \begin{aligned} x &= \SI{\frac{1}{2}}{m} \\ \dot{x} &= \SI{3}{m/s}. \end{aligned} What is the horizontal acceleration ( x ¨ ) (\ddot{x}) at this same instant ( \big( in m / s 2 ) ? \SI{\ }{m/s^2}\big)?


The answer is -15.875.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Chase
Dec 4, 2017

Relevant wiki: Lagrangian Mechanics

Here's a Lagrangian mechanics solution:

Spatial Coordinates:

x = x y = x 2 x ˙ = x ˙ y ˙ = 2 x x ˙ x = x \\ y = x^2 \\ \dot{x} = \dot{x} \\ \dot{y} = 2 x \dot{x}

Square of velocity and kinetic energy:

v 2 = x ˙ 2 + y ˙ 2 = ( 1 + 4 x 2 ) x ˙ 2 E = 1 2 m v 2 = 1 2 m ( 1 + 4 x 2 ) x ˙ 2 v^2 = \dot{x}^2 + \dot{y}^2 = (1 + 4x^2) \dot{x}^2 \\ E = \frac{1}{2} m v^2 = \frac{1}{2} m (1 + 4x^2) \dot{x}^2

Gravitational potential energy:

U g = m g y = m g x 2 U_g = m g y = m g x^2

Spring potential energy:

U s = 1 2 k ( x 2 + x 4 ) U_s = \frac{1}{2} k (x^2 + x^4)

Lagrangian:

L = E U g U s = 1 2 m ( 1 + 4 x 2 ) x ˙ 2 m g x 2 1 2 k ( x 2 + x 4 ) L = E - U_g - U_s \\ = \frac{1}{2} m (1 + 4x^2) \dot{x}^2 - m g x^2 - \frac{1}{2} k (x^2 + x^4)

Equation of Motion:

d d t L x ˙ = L x \frac{d}{dt} \frac{\partial{L}}{\partial{\dot{x}}} = \frac{\partial{L}}{\partial{x}}

Inner left term:

L x ˙ = m ( 1 + 4 x 2 ) x ˙ \frac{\partial{L}}{\partial{\dot{x}}} = m (1 + 4x^2) \dot{x}

Left term:

d d t L x ˙ = m ( 1 + 4 x 2 ) x ¨ + 8 m x x ˙ 2 \frac{d}{dt} \frac{\partial{L}}{\partial{\dot{x}}} = m (1 + 4x^2) \ddot{x} + 8 m x \dot{x}^2

Right term:

L x = 4 m x x ˙ 2 2 m g x k x 2 k x 3 \frac{\partial{L}}{\partial{x}} = 4 m x \dot{x}^2 - 2 m g x - k x - 2 k x^3

Equating:

m ( 1 + 4 x 2 ) x ¨ + 8 m x x ˙ 2 = 4 m x x ˙ 2 2 m g x k x 2 k x 3 m ( 1 + 4 x 2 ) x ¨ = 4 m x x ˙ 2 2 m g x k x 2 k x 3 m (1 + 4x^2) \ddot{x} + 8 m x \dot{x}^2 = 4 m x \dot{x}^2 - 2 m g x - k x - 2 k x^3 \\ m (1 + 4x^2) \ddot{x} = -4 m x \dot{x}^2 - 2 m g x - k x - 2 k x^3

Final expression for horizontal acceleration:

x ¨ = 4 m x x ˙ 2 2 m g x k x 2 k x 3 m ( 1 + 4 x 2 ) \ddot{x} = \frac{-4 m x \dot{x}^2 - 2 m g x - k x - 2 k x^3}{m (1 + 4x^2)}

Plugging in numbers:

x ¨ = 4 ( 1 ) ( 1 2 ) ( 3 2 ) 2 ( 1 ) ( 10 ) ( 1 2 ) ( 5 ) ( 1 2 ) ( 2 ) ( 5 ) ( 1 2 ) 3 ( 1 ) ( 1 + 4 ( 1 2 ) 2 ) = 15.875 \ddot{x} = \frac{-4 (1) (\frac{1}{2}) (3^2) - 2 (1) (10) (\frac{1}{2}) - (5) (\frac{1}{2}) - (2)(5) (\frac{1}{2})^3}{(1) (1 + 4(\frac{1}{2})^2)} = \boxed{-15.875}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...