Just E

Calculus Level 4

Let f ( x ) = { 20 , x = 1 x 20 1 x 1 , otherwise f(x) = \begin{cases} 20 \quad &, \quad x = 1 \\ \dfrac{x^{20}-1}{x-1} \quad &,\quad \text{otherwise} \end{cases} .

And let y = 0 f ( x ) e x d x \displaystyle y = \int_0^\infty f(x) e^{-x} \, dx .

Compute 99 + ( y m o d 100 ) 99 + (\lfloor y \rfloor \bmod{100} ) .

003 121 131 113 112

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

The given function f(x) is continuous at all x and so is the polynomial r = 0 19 x r \sum_{r=0}^{19} x^r and their graphs would merge with one another. So:- f ( x ) = r = 0 19 x r f(x) = \sum_{r=0}^{19} x^r So y = r = 0 19 ( 0 x r e x d x ) y=\sum_{r=0}^{19}( \int_{0}^{\infty} x^{r}e^{-x} dx)

y = r = 0 19 Γ ( r + 1 ) y=\sum_{r=0}^{19} \Gamma(r+1)

y = r = 0 19 r ! y=\sum_{r=0}^{19} r!

To compute y m o d 100 y \mod 100 we need y m o d 4 y \mod 4 and y m o d 25 y \mod 25

For the first part it is just congruent to ( r = 0 3 r ! ) (\sum_{r=0}^{3} r!) m o d 4 \mod 4

So the y 1 + 1 + 2 + 6 m o d 4 2 m o d 4 y\equiv 1+1+2+6 \mod 4 \equiv 2\mod4

For the 2nd part y m o d 25 y\mod25 \equiv ( r = 0 9 r ! ) m o d 25 (\sum_{r=0}^{9} r!)\mod25 .

A simple computation using 5 ! 5 m o d 25 5! \equiv -5\mod25 shows us that it is 14 m o d 25 14\mod25

So y is 2 m o d 4 2 \mod 4 and 14 m o d 25 14 \mod 25 which gives us nothing but y y \equiv 14 14 m o d 100 \mod 100

So our answer is 99 + 14 = 133 99+14 = 133

Relevant wiki: - Gamma Function .

Chinese Remainder Theorem

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...