e And His Twin

Calculus Level 5

lim n ( ( 1 + 1 n ) n ) n e n = ? \large \lim_{n \to \infty} \frac{((1+\frac{1}{n})^{n})^{n}}{e^{n}}=?


The answer is 0.606530659.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Letting the given limit be L L , we then have that

ln L = lim n n ( ln ( 1 + 1 n ) n ln ( e ) ) = lim n n ( n ln ( 1 + 1 n ) 1 ) \ln L = \displaystyle \lim_{n \to \infty} n \left(\ln\left(1 + \dfrac{1}{n}\right)^{n} - \ln(e)\right) = \lim_{n \to \infty} n\left(n\ln\left(1 + \dfrac{1}{n}\right) - 1\right) .

Now for x < 1 |x| \lt 1 we have that ln ( 1 + x ) = x x 2 2 + x 3 3 . . . = x x 2 2 + O ( x 3 ) \ln(1 + x) = x - \dfrac{x^{2}}{2} + \dfrac{x^{3}}{3} - ... = x - \dfrac{x^{2}}{2} + O(x^{3}) .

Thus n ln ( 1 + 1 n ) 1 = n ( 1 n 1 2 n 2 + O ( 1 n 3 ) ) 1 = 1 2 n + O ( 1 n 2 ) n\ln\left(1 + \dfrac{1}{n}\right) - 1 = n\left(\dfrac{1}{n} - \dfrac{1}{2n^{2}} + O\left(\dfrac{1}{n^{3}}\right)\right) - 1 = -\dfrac{1}{2n} + O\left(\dfrac{1}{n^{2}}\right) .

So finally ln L = lim n n ( 1 2 n + O ( 1 n 2 ) ) = 1 2 L = e 1 / 2 = 1 e 0.60653 \ln L = \displaystyle \lim_{n \to \infty} n\left(-\dfrac{1}{2n} + O\left(\dfrac{1}{n^{2}}\right)\right) = -\dfrac{1}{2} \Longrightarrow L = e^{-1/2} = \dfrac{1}{\sqrt{e}} \approx \boxed{0.60653} .

Sir why the answer is not 1 if we take the numerator as e^n.

Debanik Samanta - 2 years ago

oh my god i did the same thing. i made a mistake at the end. there is another way of solving it.we can consider the function (ln(1+x)-x)/x^2 calculate the limit of this function as x tends to 0

Srikanth Tupurani - 1 year, 9 months ago
X X
Apr 14, 2018

( ( 1 + 1 n ) n ) n e n = e n l n n + 1 n 1 1 n \displaystyle \frac{((1+\frac{1}{n})^{n})^{n}}{e^{n}}=e^{\frac{nln{\frac{n+1}{n}}-1}{\frac{1}{n}}}
Let A = lim n ( n l n n + 1 n 1 1 n ) = lim n ( l n n + 1 n 1 n + 1 1 n 2 ) A=\displaystyle \lim_{n\to\infty} \left ({\frac{nln{\frac{n+1}{n}}-1}{\frac{1}{n}}} \right)= \lim_{n\to\infty} \left ({\frac{ln{\frac{n+1}{n}}-\frac{1}{n+1}}{-\frac{1}{n^2}}} \right) (Using L' Hopital's Rule)
2 A = lim n ( n l n n + 1 n 1 1 n + l n n + 1 n 1 n + 1 1 n 2 ) 2A=\displaystyle \lim_{n\to\infty} \left ({\frac{nln{\frac{n+1}{n}}-1}{\frac{1}{n}}}+{\frac{ln{\frac{n+1}{n}}-\frac{1}{n+1}}{-\frac{1}{n^2}}} \right) = lim n ( n n + 1 ) = 1 =\displaystyle \lim_{n\to\infty} \left ({-\frac{n}{n+1}} \right) =-1
So, A = 1 2 A=-\frac{1}{2} , lim n ( ( 1 + 1 n ) n ) n e n = e A = 1 e 0.60653065 \displaystyle \lim_{n \to \infty} \frac{((1+\frac{1}{n})^{n})^{n}}{e^{n}}=e^A=\frac{1}{\sqrt{e}} \approx \boxed{0.60653065} .


Max Yuen
Apr 29, 2019

This is neat! Since most people may see the definition of the transcendental number e e defined as the limit of ( 1 + 1 n ) n (1+\frac{1}{n})^n as n n \rightarrow \infty in the numerator and plug in the limit value and then evaluate to a limit of 1. This is a good lesson on how to evaluate limits so as to not plug in the limiting value to evaluate the limiting sequence.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...