e = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Why the red part cancels?
Log in to reply
I have extended the solution a bit for more clarifications. Hope it helps you. :)
S 1 = k = 1 ∑ 2 3 k k 2 = k = 1 ∑ 2 3 k = 3 1 + 3 2 = 1 = e
S 2 = k = 0 ∑ ∞ k ! ( k − 1 ) 2 = k = 0 ∑ ∞ k ! k 2 − 2 k + 1 = k = 0 ∑ ∞ k ! k 2 − 2 k = 0 ∑ ∞ k ! k + k = 0 ∑ ∞ k ! 1 = s 2 − 2 s 1 + s 0
⟹ S 2 = s 2 − 2 s 1 + s 0 = 2 e − 2 e + e = e . Therefore, the answer is k = 0 ∑ ∞ k ! ( k − 1 ) 2 .
S 3 = k = 0 ∑ ∞ 5 k ! ( 2 k + 3 ) 2 = k = 0 ∑ ∞ 5 k ! 4 k 2 + 1 2 k + 9 = 5 4 s 2 + 1 2 s 1 + 9 s 0 = 5 8 + 1 2 + 9 e = 5 2 9 e = e
Generalisation: s n = k = 0 ∑ n − 1 ( k n − 1 ) s k
Problem Loading...
Note Loading...
Set Loading...
S 1 = k = 1 ∑ 2 3 k k 2 = 3 1 k = 1 ∑ 2 k = 1 S 2 = k = 0 ∑ ∞ k ! ( k − 1 ) 2 = k = 0 ∑ ∞ k ! k 2 − 2 k + 1 = k = 0 ∑ ∞ k ! k 2 − k ! 2 k + k ! 1 = k = 0 ∑ ∞ ( k − 1 ) ! k − ( k − 1 ) ! 2 + k ! 1 = k = 0 ∑ ∞ ( k − 1 ) ! k − 1 + 1 − ( k − 1 ) ! 2 + k ! 1 = k = 0 ∑ ∞ ( k − 1 ) ! k − 1 + ( k − 1 ) ! 1 − ( k − 1 ) ! 2 + k ! 1 = k = 0 ∑ ∞ ( k − 2 ) ! 1 − ( k − 1 ) ! 1 + k ! 1 = ( e − e ) + k = 0 ∑ ∞ k ! 1 = k = 0 ∑ ∞ k ! 1 = e S 3 = k = 0 ∑ ∞ 5 k ! ( 2 k + 3 ) 2 = 5 1 k = 0 ∑ ∞ k ! 4 k 2 + 1 2 k + 9 = 5 1 k = 0 ∑ ∞ k ! 4 k 2 + k ! 1 2 k + k ! 9 = 5 1 k = 0 ∑ ∞ ( k − 1 ) ! 4 k + ( k − 1 ) ! 1 2 + k ! 9 = 5 1 k = 0 ∑ ∞ ( k − 2 ) ! 4 ( k + 1 ) + ( k − 1 ) ! 1 2 + k ! 9 = 5 1 ( 4 ( 2 e ) + 1 2 e + 9 e ) = 5 2 9 e