A calculus problem by Aaron Jerry Ninan

Calculus Level 3

lim n ( n ! n n ) 1 n \large \lim_{n\to \infty } \left( \frac{n!}{n^{n}} \right )^{\frac{1}{n}} The limit above can be expressed in the form of e k e^{k} . Find the value of k k .


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

L = lim n ( n ! n n ) 1 / n = exp ( lim n 1 n ln ( n ! n n ) ) = exp ( lim n 1 n k = 1 n ln ( k n ) ) By Riemann’s sum = exp ( 0 1 ln ( x ) d x ) See Note. = e 1 \begin{aligned} L & = \lim_{n \to \infty} \left(\frac {n!}{n^n}\right)^{1/n} \\ & = \exp \left(\lim_{n \to \infty} \frac 1n \ln \left(\frac {n!}{n^n} \right) \right) \\ & = \exp \left({\color{#3D99F6} \lim_{n \to \infty} \frac 1n \sum_{k=1}^n \ln \left(\frac kn \right)} \right) & \small \color{#3D99F6} \text{By Riemann's sum} \\ & = \exp \left({\color{#3D99F6}\int_0^1 \ln(x) \ dx} \right) & \small \color{#3D99F6} \text{See Note.} \\ & = e^{\color{#3D99F6}-1} \end{aligned}

k = 1 \implies k = \boxed{-1}


Note: ln x \ln x has a discontinuity at x = 0 x=0 , which produces an improper bound. We can solve the integral by integration by parts with f = ln x f = \ln x and d g = 1 dg = 1 .

I = 0 1 ln x d x = x ln x 0 1 0 1 1 d x = 1 ln 1 lim x 0 + x ln x x 0 1 By L’H o ˆ pital’s rule: lim x 0 + x ln x = 0 = 0 0 1 + 0 = 1 \begin{aligned} I & = \int_0^1 \ln x \ dx \\ & = x \ln x \big|_0^1 - \int_0^1 1 \ dx \\ & = 1 \ln 1 - {\color{#3D99F6}\lim_{x \to 0^+} x \ln x} - x \big|_0^1 & \small \color{#3D99F6} \text{By L'Hôpital's rule: } \lim_{x \to 0^+} x \ln x = 0 \\ & = 0 - {\color{#3D99F6}0} - 1 + 0 \\ & = \boxed {-1} \end{aligned}

Nicely done sir!

Prakhar Bindal - 4 years, 4 months ago

how can you just take Ln inside of a limit?

Erfan Huq - 4 years, 4 months ago

Log in to reply

I don't get what you mean. I have missed two lim n \displaystyle \lim_{n \to \infty} .

Chew-Seong Cheong - 4 years, 4 months ago

Stirling's approximation:(n!/n^n)^(1/n)=((√(2πn))^(1/n))/e and hence the ans is 1/e

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...