e Nature

Calculus Level 3

1 + 3 1 ! + 5 2 ! + 7 3 ! + . . . = d e 1+\frac3{1!}+\frac5{2!}+\frac7{3!}+...=de

d = ? \lfloor d \rfloor =?

( Dhaka University admission test 2003-04 MCQ)


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I've got two paths to show:

  • 1 ) 1)

We'll manipulate our popular expansion of e.

1 + 3 1 ! + 5 2 ! + 7 3 ! + . . . 1+\frac3{1!}+\frac5{2!}+\frac7{3!}+...

= 1 + 1 + 2 1 ! + 1 + 4 2 ! + 1 + 6 3 ! + . . . =1+\frac{1+2}{1!}+\frac{1+4}{2!}+\frac{1+6}{3!}+...

= 1 + 1 1 ! + 1 2 ! + 1 3 ! + . . . + 2 ( 1 1 ! + 2 2 ! + 3 3 ! ) + . . . ) =1+\frac1{1!}+\frac1{2!}+\frac1{3!}+...+2(\frac1{1!}+\frac2{2!}+\frac3{3!})+...)

= e + 2 ( 1 + 1 1 ! + 1 2 ! + . . . ) =e+2(1+\frac1{1!}+\frac1{2!}+...)

= 3 e =3e

Q t π Qt\pi

  • 2 ) 2) (Alternative)

We'll use this relation: Σ 1 ( n k ) ! = e \Sigma \frac1{(n-k)!} = e

Check the n-th term :

u n = 2 n 1 ( n 1 ) ! u_n=\frac{2n-1}{(n-1)!}

= 2 ( n 1 ) + 1 ( n 1 ) ! \quad \; =\frac{2(n-1)+1}{(n-1)!}

= 2 ( n 2 ) ! + f r a c 1 ( n 1 ) ! \quad \; =\frac2{(n-2)!}+frac1{(n-1)!}

Hence,

Σ u n = 2 e + e \Sigma u_n =2e+e

= 3 e \quad \quad =3e

Q t π Qt\pi

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...