Each term gives equal value?

Algebra Level 2

Given z 2 + z + 1 = 0 , z^2+z+1=0, find the value of

( z + 1 z ) 2 + ( z 2 + 1 z 2 ) 2 + ( z 3 + 1 z 3 ) 2 + + ( z 21 + 1 z 21 ) 2 . \left(z+\dfrac{1}{z} \right)^2+\left(z^2+\dfrac{1}{z^2}\right)^2+\left(z^3+\dfrac{1}{z^3} \right)^2+\cdots+\left(z^{21}+\dfrac{1}{z^{21}}\right)^2.


The answer is 42.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Kenneth Tay
Nov 5, 2014

Note that z 3 = 1 z^3 = 1 . Hence, i = 1 21 ( z i + 1 z i ) 2 = i = 1 21 z 2 i + 2 + z 2 i = 7 ( z 2 + z + 1 ) + 42 + 7 ( z + z 2 + 1 ) = 0 + 42 + 0 = 42. \begin{aligned} \sum_{i=1}^{21} (z^i + \frac{1}{z^i})^2 &= \sum_{i=1}^{21} z^{2i} + 2 + z^{-2i} \\ &= 7(z^2 + z + 1) + 42 + 7(z + z^2 + 1) \\ &= 0 + 42 + 0 \\ &= 42. \end{aligned}

Elegant solution

Pablo Cesar Herrera Ortiz - 4 years, 10 months ago

Too good... U used the given information really well!

Yogesh Verma - 6 years, 7 months ago
Pranjal Jain
Oct 31, 2014

Notice that roots of given quadratic are ω \omega and ω 2 \omega^{2} and that ω ω 2 \omega\omega^2 =1 and ω + ω 2 \omega+\omega^2 =-1.

So terms where powers are not integer multiple of 3 (14 such terms) becomes 1 and remaining 7 terms become ( 1 + 1 ) 2 (1+1)^{2} =4

Hence the total sum will be 14×1+7×4= 42 \boxed{42}

Very nice. Keep posting such solutions. !

Sandeep Bhardwaj - 6 years, 7 months ago
Rick B
Dec 4, 2014

Comparing the given equation with itself when multiplied by z z , we can conclude that z 3 = 1 z^3 = 1

Dividing the equation by z z and replacing 1 1 with z 3 z^3 , we get:

z 3 + z + 1 z = 0 z^3+z+\frac{1}{z} = 0 (I)

Since we can multiply or divide (I) by any exponent of z z to reach the desired exponents, it follows that z k + 2 + z k + z k 2 = 0 k Z z^{k+2}+z^k+z^{k-2} = 0 \forall k\in \mathbb{Z}

( z + 1 z ) 2 + ( z 2 + 1 z 2 ) 2 + ( z 3 + 1 z 3 ) 2 + + ( z 21 + 1 z 21 ) 2 \implies \left(z+\dfrac{1}{z}\right)^2+\left(z^2+\dfrac{1}{z^2}\right)^2+\left(z^3+\dfrac{1}{z^3}\right)^2+\ldots+\left(z^{21}+\dfrac{1}{z^{21}}\right)^2

= z 2 + z 4 + z 6 0 + + z 42 0 + 1 z 2 + 1 z 4 + 1 z 6 0 + + 1 z 42 0 + 42 = 42 = \underbrace{z^2+z^4+z^6}_{0}+\underbrace{\ldots+z^{42}}_{0}+\underbrace{\dfrac{1}{z^2}+\dfrac{1}{z^4}+\dfrac{1}{z^6}}_{0}+\underbrace{\ldots+\dfrac{1}{z^{42}}}_{0}+42 = \boxed{42}

Note that ( z 1 ) ( z 2 + z + 1 ) = 0 z 3 = 1 (z-1)(z^2+z+1)=0 \Rightarrow z^3=1 and we know that z 1 z \neq 1 . So Let S S for the sum :

S = ( z + 1 z ) 2 + ( z + 1 z ) 2 + ( z 3 + 1 z 3 ) 2 + . . . ( z 21 + 1 z 21 ) 2 S= (z+\frac{1}{z})^2+(z+\frac{1}{z})^2+(z^3+\frac{1}{z^3})^2+...(z^{21}+\frac{1}{z^{21}})^2

S = 7 [ ( z + 1 z ) 2 + ( z 2 + 1 z 2 ) 2 + ( z 3 + 1 z 3 ) 2 ] S= 7[(z+\frac{1}{z})^2+(z^2+\frac{1}{z^2})^2+(z^3+\frac{1}{z^3})^2]

S = 7 [ ( z 2 + 2 + 1 z 2 ) + ( z 4 + 2 + 1 z 4 ) + 4 ] S=7[(z^2+2+\frac{1}{z^2})+(z^4+2+\frac{1}{z^4})+4]

S = 7 [ ( z 2 + 2 + 1 z 2 ) + ( z + 2 + 1 z ) + 4 ] S=7[(z^2+2+\frac{1}{z^2})+(z+2+\frac{1}{z})+4]

S = 7 [ ( z 2 + 1 z 2 ) + ( z + 1 z ) + 8 ] S=7[(z^2+\frac{1}{z^2})+(z+\frac{1}{z})+8]

Using the relation z 2 + z + 1 = 0 z^2+z+1=0 :

S = 7 [ ( 1 z 2 ) + ( 1 z ) + 7 ] S=7[(\frac{1}{z^2})+(\frac{1}{z})+7]

Observe that: z 2 + z + 1 = 0 1 z + 1 z 2 = z + 1 z 2 = 1 z^2+z+1=0 \Rightarrow \frac{1}{z}+\frac{1}{z^2}=\frac{z+1}{z^2}=-1

Finally :

S = 7 6 = 42 S=7 *6 = 42

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...