Find the sum
lo g 2 1 + lo g 3 2 + lo g 4 3 + ⋯ + lo g 1 0 0 9 9 .
Clarification: The base of the logarithms is 10.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Great! One should always be familiar with the properties of logarithms .
Note that Bloons used a technique called telescoping product in one of the final steps.
Bonus question
:
What is the value of
n
satisfying
lo
g
2
1
+
lo
g
3
2
+
lo
g
4
3
+
⋯
+
lo
g
n
n
−
1
=
−
1
0
0
?
10^100 or more precise Googol
A 1 with 100 zeroes, 10^100
Googol (Google)
lo g 2 1 + lo g 3 2 + lo g 4 3 + ⋯ + lo g 1 0 0 9 9 =
using properties of logs: lo g b a = lo g a − lo g b , we obtain
( lo g 1 − lo g 2 ) + ( lo g 2 − lo g 3 ) + ( lo g 3 − lo g 4 ) + lo g 4 + . . . + ( lo g 9 9 + lo g 1 0 0 ) =
canceling few terms we will end up with:
lo g ( 1 ) − lo g ( 1 0 0 ) = lo g 1 − lo g 1 0 2 =
using another property of logs which is lo g a r = r lo g ( a ) and knowing lo g 1 = 0 gives us:
0 − 2 lo g ( 1 0 ) = − 2
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Properties of Logarithms - Basic
By the Laws of Logarithm: lo g M N = lo g M + lo g N , so....
⟹ ⟹ ⟹ ⟹ lo g 2 1 + lo g 3 2 + lo g 4 3 + ⋯ + lo g 1 0 0 9 9 lo g ( 2 1 ∗ 3 2 ∗ 4 3 ∗ ⋯ ∗ 1 0 0 9 9 ) lo g ( 2 1 ∗ 3 2 ∗ 4 3 ∗ ⋯ ∗ 1 0 0 9 9 ) lo g 1 0 0 1 lo g 1 0 − 2 = − 2