Adding Almost One Logs

Algebra Level 1

Find the sum

log 1 2 + log 2 3 + log 3 4 + + log 99 100 . \log \dfrac{1}{2} + \log \dfrac{2}{3} + \log \dfrac{3}{4} + \cdots + \log \dfrac{99}{100} .

Clarification: The base of the logarithms is 10.


The answer is -2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Bloons Qoth
Aug 15, 2016

Relevant wiki: Properties of Logarithms - Basic

By the Laws of Logarithm: log M N = log M + log N \large\color{#3D99F6}{\log MN = \log M + \log N} , so....

log 1 2 + log 2 3 + log 3 4 + + log 99 100 log ( 1 2 2 3 3 4 99 100 ) log ( 1 2 2 3 3 4 99 100 ) log 1 100 log 1 0 2 = 2 \begin{aligned} & \large\log \frac{1}{2} + \log \frac{2}{3} + \log \frac{3}{4} + \cdots + \log \frac{99}{100} \\ \implies & \large\log\bigg( \frac{1}{2} * \frac{2}{3} * \frac{3}{4} * \cdots * \frac{99}{100} \bigg) \\ \implies & \large\log\bigg(\frac{1}{\color{#D61F06}{\cancel{\color{#333333}{2}}}} * \frac{\color{#D61F06}{\cancel{\color{#333333}{2}}}}{\color{#20A900}{\cancel{\color{#333333}{3}}}} * \frac{\color{#20A900}{\cancel{\color{#333333}{3}}}}{\color{#302B94}{\cancel{\color{#333333}{4}}}} * \cdots * \frac{\color{#EC7300}{\cancel{\color{#333333}{99}}}}{100}\bigg) \\ \implies & \large\log\frac{1}{100} \\ \implies & \large\log {10^{-2}} = \color{#3D99F6}{\boxed{-2}} \end{aligned}

Moderator note:

Great! One should always be familiar with the properties of logarithms .

Note that Bloons used a technique called telescoping product in one of the final steps.

Bonus question :
What is the value of n n satisfying log 1 2 + log 2 3 + log 3 4 + + log n 1 n = 100 ? \log \dfrac{1}{2} + \log \dfrac{2}{3} + \log \dfrac{3}{4} + \cdots + \log \dfrac{n-1}{n} = -100?

10^100 or more precise Googol

Ivica Florovic - 4 years, 9 months ago

A 1 with 100 zeroes, 10^100

Nelson M. Martinez - 4 years, 9 months ago

Googol (Google)

Kobe Cheung - 4 years, 7 months ago
Hana Wehbi
Aug 15, 2016

log 1 2 + log 2 3 + log 3 4 + + log 99 100 = \log \frac{1}{2} + \log \frac{2}{3} + \log \frac{3}{4} + \cdots + \log \frac{99}{100}=

using properties of logs: log a b = log a log b \color{#D61F06}{\log \frac{a}{b}=\log a - \log b } , we obtain

( log 1 log 2 ) + ( log 2 log 3 ) + ( log 3 log 4 ) + log 4 + . . . + ( log 99 + log 100 ) = (\log1-\log 2)+(\log 2-\log 3)+(\log 3-\log 4)+\log 4+...+(\log 99+\log 100)=

canceling few terms we will end up with:

log ( 1 ) log ( 100 ) = log 1 log 1 0 2 = \log(1)-\log(100)=\log 1- \log 10^2 =

using another property of logs which is log a r = r log ( a ) \color{#3D99F6}{\log a^r = r \log ( a)} and knowing log 1 = 0 \color{#3D99F6}{\log 1= 0} gives us:

0 2 log ( 10 ) = 2 \ 0-2\log(10)= \boxed{-2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...