n = 1 ∑ ∞ ⎝ ⎜ ⎜ ⎛ 2 n − 4 n − 4 n − 4 n − ⋱ 1 1 1 1 ⎠ ⎟ ⎟ ⎞ 2 n = 1 ∏ ∞ ⎝ ⎜ ⎜ ⎛ 1 + ⎝ ⎜ ⎜ ⎛ 2 n − 4 n − 4 n − 4 n − ⋱ 1 1 1 1 ⎠ ⎟ ⎟ ⎞ 2 ⎠ ⎟ ⎟ ⎞ = ?
Give your answer to 4 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
First let us deal with the continued fraction,
let,
x = ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎛ 2 n − 4 n − 4 n − 4 n − ⋱ 1 1 1 1 ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎞
we have ,
x 1 = ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎛ 2 n − 4 n − 4 n − 4 n − ⋱ 1 1 1 ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎞ ⇒ ( 2 n − x 1 ) = ( 2 n + x 1 ) 1 ⇒ ( 4 n 2 − 1 ) = x 2 1 ⇒ x 2 = ( 4 n 2 − 1 ) 1
The problem can be restated as,
n = 1 ∑ ∞ ( x ) 2 n = 1 ∏ ∞ ( 1 + x 2 ) = n = 1 ∑ ∞ ( ( 4 n 2 − 1 ) 1 ) n = 1 ∏ ∞ ( 1 + ( 4 n 2 − 1 ) 1 )
let us deal with the denominator first,
n = 1 ∑ ∞ ( ( 4 n 2 − 1 ) 1 ) = 2 1 n = 1 ∑ ∞ ( ( 2 n − 1 ) 1 − ( 2 n + 1 ) 1 ) = 2 1
The numerator is,
n = 1 ∏ ∞ ( 1 + ( 4 n 2 − 1 ) 1 ) = n = 1 ∏ ∞ ( ( 4 n 2 − 1 ) 4 n 2 )
Consider the infinite product expansion of sine,
we have, x s i n ( x ) = n = 1 ∏ ∞ ( 1 − n 2 π 2 x 2 )
let x = 2 π , we get
π 2 = n = 1 ∏ ∞ ( 1 − ( 2 n ) 2 1 ) = n = 1 ∏ ∞ ( 4 n 2 4 n 2 − 1 )
or n = 1 ∏ ∞ ( ( 4 n 2 − 1 ) 4 n 2 ) = 2 π
now D e n o m i n a t o r N u m e r a t o r = 2 1 2 π = π = 3 . 1 4 1 5