Add, Multiply and Divide to infinity

Calculus Level 5

n = 1 ( 1 + ( 1 2 n 1 4 n 1 4 n 1 4 n ) 2 ) n = 1 ( 1 2 n 1 4 n 1 4 n 1 4 n ) 2 = ? \large \frac{\displaystyle \prod_{n=1}^{\infty}\left(1+ \left(\frac{1}{2n-\frac{1}{4n-\frac{1}{4n-\frac{1}{4n-_\ddots}}}}\right)^2\right)}{\displaystyle\sum_{n=1}^{\infty} \left(\frac{1}{2n-\frac{1}{4n-\frac{1}{4n-\frac{1}{4n-_\ddots}}}}\right)^2} = \ ?

Give your answer to 4 decimal places.


The answer is 3.1415.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

First let us deal with the continued fraction,

let,

x = ( 1 2 n 1 4 n 1 4 n 1 4 n ) \begin{aligned} x= \left(\cfrac{1}{2n-\cfrac{1}{4n-\cfrac{1}{4n-\cfrac{1}{4n-_\ddots}}}}\right)\end{aligned}

we have ,

1 x = ( 2 n 1 4 n 1 4 n 1 4 n ) ( 2 n 1 x ) = 1 ( 2 n + 1 x ) ( 4 n 2 1 ) = 1 x 2 x 2 = 1 ( 4 n 2 1 ) \dfrac{1}{x}= \left(2n-\cfrac{1}{4n-\cfrac{1}{4n-\cfrac{1}{4n-_\ddots}}}\right)\Rightarrow (2n-\dfrac{1}{x})=\dfrac{1}{ (2n+\dfrac{1}{x})}\\ \Rightarrow (4n^2-1)=\dfrac{1}{x^2}\\ \Rightarrow x^2=\dfrac{1}{(4n^2-1)}

The problem can be restated as,

n = 1 ( 1 + x 2 ) n = 1 ( x ) 2 = n = 1 ( 1 + 1 ( 4 n 2 1 ) ) n = 1 ( 1 ( 4 n 2 1 ) ) \dfrac{\displaystyle\prod_{n=1}^{\infty}\left(1+x^2\right)}{\displaystyle\sum_{n=1}^{\infty} \left(x\right)^2}= \dfrac{\displaystyle\prod_{n=1}^{\infty}\left(1+\dfrac{1}{(4n^2-1)}\right)}{\displaystyle\sum_{n=1}^{\infty} \left(\dfrac{1}{(4n^2-1)}\right)}

let us deal with the denominator first,

n = 1 ( 1 ( 4 n 2 1 ) ) = 1 2 n = 1 ( 1 ( 2 n 1 ) 1 ( 2 n + 1 ) ) = 1 2 \displaystyle\sum_{n=1}^{\infty} \left(\dfrac{1}{(4n^2-1)}\right)=\dfrac{1}{2}\displaystyle\sum_{n=1}^{\infty} \left(\dfrac{1}{(2n-1)}-\dfrac{1}{(2n+1)}\right)=\dfrac{1}{2}

The numerator is,

n = 1 ( 1 + 1 ( 4 n 2 1 ) ) = n = 1 ( 4 n 2 ( 4 n 2 1 ) ) \displaystyle\prod_{n=1}^{\infty}\left(1+\dfrac{1}{(4n^2-1)}\right)=\displaystyle\prod_{n=1}^{\infty}\left(\dfrac{4n^2}{(4n^2-1)}\right)

Consider the infinite product expansion of sine,

we have, s i n ( x ) x = n = 1 ( 1 x 2 n 2 π 2 ) \dfrac{sin(x)}{x}=\displaystyle\prod_{n=1}^{\infty} \left(1-\dfrac{x^2}{n^2 \pi^2}\right)

let x = π 2 x=\dfrac{\pi}{2} , we get

2 π = n = 1 ( 1 1 ( 2 n ) 2 ) = n = 1 ( 4 n 2 1 4 n 2 ) \dfrac{2}{\pi}=\displaystyle\prod_{n=1}^{\infty} \left(1-\dfrac{1}{(2n)^2}\right)=\displaystyle\prod_{n=1}^{\infty} \left(\dfrac{4n^2-1}{4n^2}\right)

or n = 1 ( 4 n 2 ( 4 n 2 1 ) ) = π 2 \displaystyle\prod_{n=1}^{\infty}\left(\dfrac{4n^2}{(4n^2-1)}\right)=\dfrac{\pi}{2}

now N u m e r a t o r D e n o m i n a t o r = π 2 1 2 = π = 3.1415 \dfrac{\displaystyle Numerator}{\displaystyle Denominator}=\dfrac{\dfrac{\pi}{2}}{\dfrac{1}{2}}=\large \pi=\boxed{3.1415}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...