Easier than it looks :)

Algebra Level 2

Given that a 1 , a 2 , a 3 , a 4 > 0 a_1,a_2,a_3,a_4 > 0 , find the maximum constant N N for which the following inequality always holds true:

a 1 a 2 ( a 3 2 + a 4 2 ) + a 3 a 4 ( a 1 2 + a 2 2 ) a 1 a 2 a 3 a 4 N . \frac{a_1a_2(a_3^2+a_4^2)+a_3a_4(a_1^2+a_2^2)}{a_1a_2a_3a_4} \geq N.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

10 solutions

The inequality can be written as

x + 1 x + y + 1 y N x + \dfrac{1}{x} + y + \dfrac{1}{y} \ge N ,

where x = a 1 a 2 x = \dfrac{a_{1}}{a_{2}} and y = a 3 a 4 y = \dfrac{a_{3}}{a_{4}} .

Now by the AM-GM inequality we know that b + 1 b 2 b + \dfrac{1}{b} \ge 2 for any positive real number b b , so N = 2 + 2 = 4 N = 2 + 2 = \boxed{4} .

Nice manipulation :)

Chesterkyles Colita - 6 years, 7 months ago

And indeed, both optimizing equalities can hold simultaneously...i.e. when x=y=1. Anyways x and y are totally independent so here this addition is superfluous!

Aditya Kumar - 6 years, 9 months ago

Log in to reply

Yes, the independence of x x and y y is crucial to the last step.

Brian Charlesworth - 6 years, 8 months ago

I got to a1/a2 + a2/a1 + a3/a4 + a4/a3 >=N And then using logic I just realized that to find the largest number that the sum is lager towards, you need the smallest factors in the sum, and since we are limited to integers greater than zero, but no restrictions on being different from each other, the lowest possible sum is when each a=1. And so 1/1 + 1/1 + 1/1 +1/1 = 4 ^¬^

Arnout Coosemans - 3 years, 9 months ago

Log in to reply

Really good approach.

Michele Franzoni - 2 years, 2 months ago

I understand most of it except the part where b+1/b >= 2. How do you get that from the AM-GM inequality?

Ryan Huynh - 1 year, 10 months ago

i don't understand your solution, especially the b + 1/b <= 2. how about if the b is 100. should'nt it be 100 + 1/100 > 2? what's wrong with my way of thinking here? thanks for any feedback, please help me!

Muhammad Saleh Alatas - 11 months, 1 week ago
Dawson Byrd
Sep 14, 2014

If we expand the denominator, we find that the LHS is equivalent to:

a 1 a 2 a 3 2 + a 1 a 2 a 4 2 + a 3 a 4 a 1 2 + a 3 a 4 a 2 2 a 1 a 2 a 3 a 4 \frac { { a }_{ 1 }{ a }_{ 2 }{ { a }_{ 3 } }^{ 2 }+{ a }_{ 1 }{ a }_{ 2 }{ { a }_{ 4 } }^{ 2 }+{ a }_{ 3 }{ a }_{ 4 }{ { a }_{ 1 } }^{ 2 }+{ a }_{ 3 }{ a }_{ 4 }{ { a }_{ 2 } }^{ 2 } }{ { a }_{ 1 }{ a }_{ 2 }{ { a }_{ 3 }{ a }_{ 4 } } }

From AM-GM we can find that:

a 1 a 2 a 3 2 + a 1 a 2 a 4 2 + a 3 a 4 a 1 2 + a 3 a 4 a 2 2 4 a 1 a 2 a 3 2 a 1 a 2 a 4 2 a 3 a 4 a 1 2 a 3 a 4 a 2 2 4 \frac { { a }_{ 1 }{ a }_{ 2 }{ { a }_{ 3 } }^{ 2 }+{ a }_{ 1 }{ a }_{ 2 }{ { a }_{ 4 } }^{ 2 }+{ a }_{ 3 }{ a }_{ 4 }{ { a }_{ 1 } }^{ 2 }+{ a }_{ 3 }{ a }_{ 4 }{ { a }_{ 2 } }^{ 2 } }{ 4 }\ge \sqrt [ 4 ]{ { a }_{ 1 }{ a }_{ 2 }{ { a }_{ 3 } }^{ 2 }{ a }_{ 1 }{ a }_{ 2 }{ { a }_{ 4 } }^{ 2 }{ a }_{ 3 }{ a }_{ 4 }{ { a }_{ 1 } }^{ 2 }{ a }_{ 3 }{ a }_{ 4 }{ { a }_{ 2 } }^{ 2 } }

Which is the same thing as:

a 1 a 2 a 3 2 + a 1 a 2 a 4 2 + a 3 a 4 a 1 2 + a 3 a 4 a 2 2 4 a 1 a 2 a 3 a 4 \frac { { a }_{ 1 }{ a }_{ 2 }{ { a }_{ 3 } }^{ 2 }+{ a }_{ 1 }{ a }_{ 2 }{ { a }_{ 4 } }^{ 2 }+{ a }_{ 3 }{ a }_{ 4 }{ { a }_{ 1 } }^{ 2 }+{ a }_{ 3 }{ a }_{ 4 }{ { a }_{ 2 } }^{ 2 } }{ 4 }\ge { a }_{ 1 }{ a }_{ 2 }{ a }_{ 3 }{ { a }_{ 4 } }

To answer our question we can convert this to:

a 1 a 2 a 3 2 + a 1 a 2 a 4 2 + a 3 a 4 a 1 2 + a 3 a 4 a 2 2 a 1 a 2 a 3 a 4 4 \frac { { a }_{ 1 }{ a }_{ 2 }{ { a }_{ 3 } }^{ 2 }+{ a }_{ 1 }{ a }_{ 2 }{ { a }_{ 4 } }^{ 2 }+{ a }_{ 3 }{ a }_{ 4 }{ { a }_{ 1 } }^{ 2 }+{ a }_{ 3 }{ a }_{ 4 }{ { a }_{ 2 } }^{ 2 } }{ { a }_{ 1 }{ a }_{ 2 }{ a }_{ 3 }{ { a }_{ 4 } } } \ge 4

Therefore, N = 4 N=\boxed { 4 }

Eric Kim
Sep 13, 2014

The expression on the left can be simplified as a 3 2 + a 4 2 a 3 a 4 + a 1 2 + a 2 2 a 1 a 2 \frac{a_{3}^{2}+a_{4}^{2}}{a_{3}a_{4}}+\frac{a_{1}^{2}+a_{2}^{2}}{a_{1}a_{2}} .

Cauchy-Schwarz tells us that for x , y x,y in R , ( x + y ) 2 2 ( x 2 + y 2 ) \mathbb{R},(x+y)^{2}\leq2(x^{2}+y^{2}) , so 2 x y x 2 + y 2 x 2 + y 2 x y 2 2xy\leq x^{2}+y^{2} \Rightarrow \frac{x^{2}+y^{2}}{xy}\geq2 .

Thus, a 1 2 + a 2 2 a 1 a 2 2 \frac{a_{1}^{2}+a_{2}^{2}}{a_{1}a_{2}}\geq2 , a 3 2 + a 4 2 a 3 a 4 2 a 3 2 + a 4 2 a 3 a 4 + a 1 2 + a 2 2 a 1 a 2 4 \frac{a_{3}^{2}+a_{4}^{2}}{a_{3}a_{4}}\geq2 \Rightarrow \frac{a_{3}^{2}+a_{4}^{2}}{a_{3}a_{4}}+\frac{a_{1}^{2}+a_{2}^{2}}{a_{1}a_{2}}\geq\boxed{4} .

Perfect !!! I did this too

Magnas Bera - 1 year, 11 months ago

WLOG, we assume that a 1 = a 2 = a 3 = a 4 = x {a}_{1}={a}_{2}={a}_{3}={a}_{4}=x . Hence, we have,

x 2 ( 2 x ) + x 2 ( 2 x ) x 4 N \frac{ x^{ 2 }(2x)+x^{ 2 }(2x) }{ x^{ 4 } } \geq N \ 4 x ( x 2 ) x 4 N \frac{4x(x^{2})}{x^{4}} \geq N \ 4 x x 2 N \frac{4x}{x^{2}} \geq N \ 4 x N \frac{4}{x} \geq N \

x {x} is a positive integer. N {N} maximized when x = 1 {x=1} . Therefore, the maximum value of N = 4 {N=4} .

Sayuz Basak
Oct 31, 2015

( a 1 a 2 ) 2 0 { ({ a }_{ 1 }-{ a }_{ 2 }) }^{ 2 }\ge 0

a 1 2 + a 2 2 > 2 a 1 a 2 a n d a 3 2 + a 4 2 > 2 a 3 a 4 \therefore \quad { a }_{ 1 }^{ 2 }+{ a }_{ 2 }^{ 2 }>2{ a }_{ 1 }a_{ 2 }\quad \quad and\quad { a }_{ 3 }^{ 2 }+{ a }_{ 4 }^{ 2 }>2{ a }_{ 3 }a_{ 4 }

Therefore a 1 a 2 ( a 3 2 + a 4 2 ) + a 3 a 4 ( a 1 2 + a 2 2 ) a 1 a 2 a 3 a 4 a 1 a 2 ( 2 a 3 a 4 ) + a 3 a 4 ( 2 a 1 a 2 ) a 1 a 2 a 3 a 4 \frac { { { a }_{ 1 }{ a }_{ 2 }\left( { a }_{ 3 }^{ 2 }+{ a }_{ 4 }^{ 2 } \right) +{ a }_{ 3 }{ a }_{ 4 }\left( { a }_{ 1 }^{ 2 }+{ a }_{ 2 }^{ 2 } \right) } }{ { a }_{ 1 }a_{ 2 }{ a }_{ 3 }{ a }_{ 4 } } \ge \frac { { { a }_{ 1 }{ a }_{ 2 }\left( { 2a }_{ 3 }{ a }_{ 4 } \right) +{ a }_{ 3 }{ a }_{ 4 }\left( { 2a }_{ 1 }a_{ 2 } \right) } }{ { a }_{ 1 }a_{ 2 }{ a }_{ 3 }{ a }_{ 4 } }

N = 4 \therefore \quad N\quad =\quad \boxed { 4 }

Mustafa Alelg
Dec 26, 2017

re-writing the inequality gives us:

a 1 a 2 ( a 3 2 + a 4 2 ) + a 3 a 4 ( a 1 2 + a 2 2 ) a 1 a 2 a 3 a 4 = N a 3 a 4 + a 4 a 3 + a 2 a 1 + a 1 a 2 = N \frac {a_1a_2(a_3^2+a_4^2)+a_3a_4(a_1^2+a_2^2)} {a_1a_2a_3a_4} = N \Leftrightarrow \frac {a_3} {a_4} + \frac {a_4} {a_3} + \frac {a_2} {a_1} + \frac {a_1} {a_2}=N

And by A M G M AM-GM :

a 3 a 4 + a 4 a 3 + a 2 a 1 + a 1 a 2 = N 4 a 3 a 4 a 4 a 3 a 2 a 1 a 1 a 2 4 = 4 \frac {a_3} {a_4}+\frac {a_4} {a_3}+\frac {a_2} {a_1}+\frac {a_1} {a_2} = N \geq 4\sqrt[4]{\frac {a_3} {a_4} \cdot \frac {a_4} {a_3} \cdot \frac {a_2} {a_1} \cdot \frac {a_1} {a_2}}=4

Leonardo Vannini
Feb 21, 2016

( x 1 ) 2 = x 2 2 x + 1 = x 2 + 1 x 0 x + 1 x 2 a 1 a 2 + a 2 a 1 2 a n d a 3 a 4 + a 4 a 3 2 N 4 { (x-1) }^{ 2 }=x^{ 2 }-2x+1=x-2+\frac { 1 }{ x } \ge 0\quad \rightarrow \quad x+\frac { 1 }{ x } \ge 2\quad \rightarrow \quad \frac { { a }_{ 1 } }{ { a }_{ 2 } } +\frac { { a }_{ 2 } }{ { a }_{ 1 } } \ge 2\quad and\quad \frac { { a }_{ 3 } }{ { a }_{ 4 } } +\frac { { a }_{ 4 } }{ { a }_{ 3 } } \ge 2\quad \rightarrow \quad N\ge 4

Binyamin Tsadik
Jan 14, 2016

Just make all values of a = 1

Dat Huynh
Sep 21, 2014

The inequality can be rewritten as

a 3 2 + a 4 2 a 3 a 4 + a 1 2 + a 2 2 a 1 a 2 N \dfrac{a_{3}^{2} + a_{4}^{2}}{a_{3}a_{4}} + \dfrac{a_{1}^{2} + a_{2}^{2}}{a_{1}a_{2}} \geq N

Observe that ( a 3 + a 4 ) 2 = a 3 2 + 2 a 3 a 4 + a 4 2 (a_{3}+a_{4})^{2} = a_{3}^{2} + 2a_{3}a_{4} + a_{4}^{2}

and

( a 1 + a 2 ) 2 = a 1 2 + 2 a 1 a 2 + a 2 2 (a_{1}+a_{2})^{2} = a_{1}^{2} + 2a_{1}a_{2} + a_{2}^{2}

That can be rewritten as:

a 3 2 + a 4 2 = ( a 3 + a 4 ) 2 2 a 3 a 4 a_{3}^{2} + a_{4}^{2} = (a_{3}+a_{4})^{2} - 2a_{3}a_{4}

and

a 1 2 + a 2 2 = ( a 1 + a 2 ) 2 2 a 1 a 2 a_{1}^{2} + a_{2}^{2} = (a_{1}+a_{2})^{2} - 2a_{1}a_{2}

Substituting those values into the inequality

( a 3 + a 4 ) 2 2 a 3 a 4 a 3 a 4 + ( a 1 + 1 2 ) 2 2 a 1 a 2 a 1 a 2 N \dfrac{(a_{3} + a_{4})^{2} - 2a_{3}a_{4}}{a_{3}a_{4}} + \dfrac{(a_{1}+1_{2})^{2} - 2a_{1}a_{2}}{a_{1}a_{2}} \geq N

This simplifies to

( a 3 + a 4 ) 2 a 3 a 4 + ( a 1 + a 2 ) 2 a 1 a 2 N + 4 \dfrac{(a_{3} + a_{4})^2}{a_{3}a_{4}} + \dfrac{(a_{1} + a_{2})^2}{a_{1}a_{2}} \geq N + 4

Thus, the answer is 4.

Jona Ndrecaj
Apr 13, 2019

It doesn't say we can't do it, so why not make a 1 a_{1} = a 2 a_{2} = a 3 a_{3} = a 4 a_{4} . To make things simpler, let's write all these equal terms as a:

a a ( a 2 + a 2 ) + a a ( a 2 + a 2 ) a a a a \frac{aa(a^{2}+a^{2}) + aa(a^{2}+a^{2})}{aaaa}\geq N

The problem is asking for the maximum constant N - how far can we push N? After what value will the inequality stop being true?

So, what we are looking for is the value of N, which makes the expression an equality:

2 [ a 2 ( a 2 + a 2 ) ] 2[a^{2}(a^{2}+a^{2})] = N a 4 a^{4}

2 [ ( a 4 + a 4 ) ] 2[(a^{4}+a^{4})] = N a 4 a^{4}

2 [ ( 2 a 4 ) ] 2[(2a^{4})] = N a 4 a^{4}

4 a 4 4a^{4} = N a 4 a^{4}

The correct answer should be 4 \boxed{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...