Swapping Positions

Algebra Level 1

log 10 7 × log 7 10 = ? \large \log_{10}7 \times \log_{7}10 = \, ?

0 1 2 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Sam Bealing
Jul 5, 2016

Relevant wiki: Logarithms

Using the identity log a b = 1 log b a \log_{a} {b} =\dfrac{1}{\log_{b}{a}} we see:

log 7 10 = 1 log 10 7 log 7 10 × log 10 7 = 1 \log_{7}{10}=\dfrac{1}{\log_{10}{7}} \implies \log_{7}{10} \times \log_{10}{7}=1

1 \boxed{\boxed{1}}

Hung Woei Neoh
Jul 5, 2016

log 10 7 × log 7 10 = log 7 7 log 7 10 × log 7 10 = log 7 7 = 1 \log_{10}7 \times \log_7 10\\ =\dfrac{\log_7 7}{\cancel{\log_7 10}} \times \cancel{\log_7 10}\\ =\log_7 7\\ =\boxed{1}

Zach Abueg
Dec 28, 2016

Change of base:

log b a = l o g a l o g b \log_b a = \frac {log a}{log b}

log 10 7 = l o g 7 l o g 10 \log_{10} {7} = \frac {log {7}}{log {10}}

log 7 10 = l o g 10 l o g 7 \log_{7} {10} = \frac {log {10}}{log {7}}

l o g 7 l o g 10 × l o g 10 l o g 7 = 1 \frac {log {7}}{log {10}} \times \frac {log {10}}{log {7}} = 1

log 10 7 log 7 10 = log 7 1 0 log 10 7 = log 7 7 = 1 \begin{aligned} \log_{10} 7 \log_7 10 & = \log_7 10^{\log_{10} 7} \\ & = \log_7 7 \\ & = \boxed{1} \end{aligned} .

@Hritesh Mourya , you don't need to key in \ ( and \ ) for each functions. You only need to do once in the beginning and the end. You can actually see the codes by placing your mouse cursor on top of the formulas. See below.

Chew-Seong Cheong - 4 years, 11 months ago

Thank a lot for the info

Hritesh Mourya - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...