Cyclical digits

Find the unit digit of the number 1257 7 335 12577^{335} .

9 7 4 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 20, 2016

Relevant wiki: Euler's Theorem

We need to find 1257 7 335 mod 10 12577^{335} \text{ mod 10} .

1257 7 335 ( 12570 + 7 ) 335 (mod 10) 7 335 (mod 10) Since gcd ( 7 , 10 ) = 1 , Euler’s theorem applies. 7 335 mod ϕ ( 10 ) (mod 10) Euler’s totient function ϕ ( 10 ) = 4 7 335 mod 4 (mod 10) 7 3 (mod 10) 7 49 (mod 10) 7 ( 50 1 ) (mod 10) 7 (mod 10) 3 (mod 10) \begin{aligned} 12577^{335} & \equiv (12570 + 7)^{335} \text{ (mod 10)} \\ & \equiv 7^{\color{#3D99F6}335} \text{ (mod 10)} & \small {\color{#3D99F6}\text{Since }\gcd(7,10) = 1 \text{, Euler's theorem applies.}} \\ & \equiv 7^{\color{#3D99F6}335 \text{ mod }\phi(10)} \text{ (mod 10)} & \small {\color{#3D99F6}\text{Euler's totient function }\phi (10) = 4} \\ & \equiv 7^{\color{#3D99F6}335 \text{ mod }4} \text{ (mod 10)} \\ & \equiv 7^{\color{#3D99F6}3} \text{ (mod 10)} \\ & \equiv 7\cdot 49 \text{ (mod 10)} \\ & \equiv 7(50-1) \text{ (mod 10)} \\ & \equiv -7 \text{ (mod 10)} \\ & \equiv \boxed{3} \text{ (mod 10)} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...