A problem by AoPS Master

Level 2

What is the remainder when 1 2 144 12^{144} is divided by 169 169 ?


The answer is 157.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aops Master
Feb 19, 2018

By binomial expansion we get: ( 13 1 ) 144 (13-1)^{144} simplifies to 1 3 1 ( 1 ) 143 + 1 3 0 ( 1 ) 144 13^1\cdot(-1)^{143}+13^0\cdot(-1)^{144} when we cancel the terms that have at least two 13s. This simplifies to 12 -12 which is 157 157 modulo 169 169 .

If ( 13 1 ) 144 = 1 3 1 × ( 1 ) 143 + 1 3 0 × ( 1 ) 144 = 13 × 1 + 1 × 1 = 13 + 1 = 12 ( 13 - 1 ) ^ { 144 } = 13 ^ { 1 } \times ( -1 ) ^ { 143 } + 13 ^ { 0 } \times ( -1 ) ^ { 144 } = 13 \times -1 + 1 \times 1 = - 13 + 1 = - 12 .

Then how to calculate 1 2 144 m o d 169 12 ^ { 144 } \mod 169 with only 12 - 12 ?

. . - 3 months, 3 weeks ago
Nikola Alfredi
Mar 10, 2020

SOLUTION:

If we see then we can find 1 2 156 1 ( m o d 169 ) \displaystyle 12^{156} \equiv 1 \pmod {169 } .

Or we can say 1 2 144 × 1 2 12 1 ( m o d 169 ) 1 2 144 × 14 1 ( m o d 169 ) \displaystyle 12^{144} \times 12^{12} \equiv 1 \pmod {169 } \implies 12^{144} \times 14 \equiv 1 \pmod {169 } .

Multiply 12 12 both sides as 12 × 14 = 168 12 \times 14 = 168 , 1 2 144 × 14 × 12 12 ( m o d 169 ) 1 2 144 12 ( m o d 169 ) 1 2 144 157 ( m o d 169 ) \displaystyle 12^{144} \times 14 \times 12 \equiv 12 \pmod{169 } \implies 12^{144} \equiv -12 \pmod {169 }\implies 12^{144} \equiv 157 \pmod{169 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...