A geometry problem by Rohit Sharma

Geometry Level 2

The equation of a line is 3x-4y+12=0 . It intersects X-axis in point A and Y-axis in point B , find the length of AB????????


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Joshua Olayanju
May 21, 2020

I did it this way 3 x 4 y + 12 = 0 3 x = 4 y 12 x = 4 3 y 4 x i n t e r c e p t ( 4 , 0 ) T h e n f o r y i n t e r c e p t 3 x 4 y + 12 = 0 4 y = 3 x 12 y = 3 4 x + 3 y i n t e r c e p t ( 0 , 3 ) ( x 2 x 1 ) 2 + ( y 2 y 1 ) 2 ( 0 ( 4 ) ) 2 + ( 3 0 ) 2 = 4 2 + 3 2 = 25 = 5 3x-4y+12=0\quad \quad \\ \\ 3x=4y-12\\ \\ x=\frac { 4 }{ 3 } y\boxed { -4 } \\ \\ x\quad intercept\quad (-4,0)\\ \\ \\ Then\quad for\quad y\quad intercept\quad \\ \\ 3x-4y+12=0\\ \\ -4y=-3x-12\\ \\ y=\frac { 3 }{ 4 } x\boxed { +3 } \\ \\ y\quad intercept\quad (0,3)\\ \\ \sqrt { { ({ x }_{ 2 }^{ }-{ x }_{ 1 }^{ }) }^{ 2 }+{ ({ y }_{ 2 }^{ }-{ y }_{ 1 }^{ }) }^{ 2 } } \\ \\ \sqrt { { (0-(-4)) }^{ 2 }+{ (3-0) }^{ 2 } } \\ =\sqrt { { 4 }^{ 2 }+{ 3 }^{ 2 } } =\sqrt { 25 } =\quad 5

Refer to the following graph:

Clearly, \(AB=5\) Clearly, A B = 5 AB=5

I see you really like visual explanations. How do you make these?

Joshua Olayanju - 1 year ago

Log in to reply

GeoGebra(sometimes) and PowerPoint(mostly)

Vinayak Srivastava - 1 year ago

x 3 y 4 = 1 i m p l i e s A ( 3 , 0 ) a n d B ( 0 , 4 ) A B = 3 2 + 4 2 = 5. \dfrac{x}{3}-\dfrac{y}{4}=1~~implies~A(3,0)~and B(0,4)\\\therefore~AB=\sqrt{3^2+4^2} = 5.\\
You may refer to the notes on st. lines in Brilliant.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...