Compute It

Algebra Level 3

If x 3 + 4 x = 8 x^3 + 4x = 8 , compute x 7 + 64 x 2 x^7 + 64x^2 .


The answer is 128.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Aug 31, 2014

It is given that x 3 + 4 x = 8 x^3+4x=8 .

Multiplied by x 4 : x 7 + 4 x 5 = 8 x 4 x^4: \quad x^7+4x^5=8x^4

x 7 + 4 x 2 ( x 3 + 4 x 4 x ) = 8 x ( x 3 + 4 x 4 x ) \quad \quad \quad \quad \quad \quad \quad \space \space x^7+4x^2(x^3+4x-4x)=8x(x^3+4x-4x)

x 7 + 4 x 2 ( 8 4 x ) = 8 x ( 8 4 x ) \quad \quad \quad \quad \quad \quad \quad \space \space x^7+4x^2(8-4x)=8x(8-4x)

x 7 + 32 x 2 16 x 3 = 64 x 32 x 2 \quad \quad \quad \quad \quad \quad \quad \space \space x^7+32x^2-16x^3=64x-32x^2

x 7 + 32 x 2 16 ( 8 4 x ) = 64 x 32 x 2 \quad \quad \quad \quad \quad \quad \quad \space \space x^7+32x^2-16(8-4x)=64x-32x^2

x 7 + 32 x 2 128 + 64 x = 64 x 32 x 2 \quad \quad \quad \quad \quad \quad \quad \space \space x^7+32x^2-128+64x=64x-32x^2

x 7 + 64 x 2 = 128 \quad \quad \quad \quad \quad \quad \quad \space \space x^7+64x^2=\boxed{128}

Really thinking the unthinkable!

Sanjana Nedunchezian - 6 years, 9 months ago

This solution is nice..

John Aries Sarza - 6 years, 9 months ago

Nice solution

Shubhendra Singh - 6 years, 9 months ago
Milind Prabhu
Oct 7, 2014

x 3 + 4 x = 8 { x }^{ 3 }+4x=8\\

x 3 = 8 4 x { x }^{ 3 }=8-4x

Squaring both sides.

x 6 = 64 + 16 x 2 64 x { x }^{ 6 }=64+16{ x }^{ 2 }-64x

x 6 + 64 x = 16 x 2 + 64 { x }^{ 6 }+64x=16{ x }^{ 2 }+64

From the given equation:

x 7 + 64 x 2 = x ( x 6 + 64 x ) { x }^{ 7 }+64{ x }^{ 2 }=x({ x }^{ 6 }+64x)

x 7 + 64 x 2 = x ( 16 x 2 + 64 ) = 16 ( x 3 + 4 x ) { x }^{ 7 }+64{ x }^{ 2 }=x(16{ x }^{ 2 }+64)=16({ x }^{ 3 }+4x)

16 ( 8 ) = 128 16(8)=\boxed { 128 }

Arpit Saini
Aug 31, 2014

let's say dividend = x^7+64x^2 and divider = x^3+4x . Then you will find out by factor theorem that quotient is = x^4 - 4x^2 + 16 and remainder = 64x^2 - 64x . then you can write : x^7+64x^2 = (x^3+4x) (x^4-4x^2+16) + 64x^2-64x ; We know that x^3+4x = 8 ; x (x^2+4) = 8 ; also x = 8/(x^2+4) ; Then Ans = 8 (x^4-4x^2+16) + 64x^2-64x ; Write x^4 - 4x^2 + 16 as (x^2+4)^2 -12x^2 As you know x^2+4 = 8/x ; By doing some substitution like (8-x^3)/x = 4 and interpretation You will get Ans = 32 4 = 128

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...