⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ x + y + z = 1 x 2 + y 2 + z 2 = 3 5 x 3 + y 3 + z 3 = 9 7
Let x , y and z satisfy the system of equations above. Find max ( x , y , z ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let's suppose, without loss of generality, that ∣ x ∣ ≤ ∣ y ∣ ≤ ∣ z ∣ . Let's also assume − we shall justify this assumption later − that x , y and z are integers. In this case, since 1 2 + 3 2 + 5 2 is the only way of writing 3 5 as a sum of 3 squares, it follows that ∣ x ∣ = 1 , ∣ y ∣ = 3 and ∣ z ∣ = 5 . From the eight possible triples ( x , y , z ) = ( ± 1 , ± 3 , ± 5 ) , only ( − 1 , − 3 , 5 ) further satisfies the other two equations, therefore max ( x , y , z ) = 5 .
Let's now prove that there are no other solutions to the given system of equations, except for permutations of ( − 1 , − 3 , 5 ) . Its uniqueness follows from the fact that z satisfies a cubic equation whose roots are − 1 , − 3 and 5 . To derive such cubic equation, let's first combine the first two equations of the given system:
( 1 − z ) 2 = ( x + y ) 2 = x 2 + y 2 + 2 x y = 3 5 − z 2 + 2 x y ⇒ x y = z 2 − z − 1 7 ;
this result, combined with all three equations, yields
9 7 − z 3 = x 3 + y 3 = ( x + y ) ( x 2 − x y + y 2 ) = ( 1 − z ) [ 3 5 − z 2 − ( z 2 − z − 1 7 ) ] = ( 1 − z ) ( 5 2 + z − 2 z 2 ) ⇒ z 3 − z 2 − 1 7 z − 1 5 = 0 . □
Problem Loading...
Note Loading...
Set Loading...
Now consider a monic polynomial g ( t ) having roots x , y , z .We have that: g ( t ) g ( t ) = ( t − x ) ( t − y ) ( t − z ) = t 3 − ( x + y + z ) t 2 + ( x y + x z + y z ) t − x y z We have that: x + y + z ( x + y + z ) 2 x 2 + y 2 + z 2 + 2 ( x y + x z + y z ) 3 5 + 2 ( x y + x z + y z ) ⟹ x y + x z + y z = 1 = 1 2 = 1 = 1 = − 1 7 To find the value of x y z , we make use of the identity x 3 + y 3 + z 3 − 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 − x y − x z − y z )
Substituting the known values in,we get: 9 7 − 3 x y z ⟹ 3 x y z ⟹ x y z = ( 1 ) ( 3 5 − ( − 1 7 ) ) = 4 5 = 1 5 Substituting in the required values,we get: g ( t ) = t 3 − t 2 + 1 7 t − 1 5 By the Rational Root Theorem ,we get that t = 5 is a root of g ( t ) .Factoring,we get g ( t ) = ( t − 5 ) ( t 2 + 4 t + 3 ) = ( t − 5 ) ( t + 1 ) ( t + 3 ) .Hence ( x , y , z ) = { 5 , − 1 , − 3 } and max ( x , y , z ) = 5