Some algebra

Algebra Level 3

{ x + y + z = 1 x 2 + y 2 + z 2 = 35 x 3 + y 3 + z 3 = 97 \large{ \begin{cases} x+y+z=1 \\ x^2+y^2+z^2=35 \\ x^3 + y^3 + z^3 = 97 \end{cases} }

Let x , y x,y and z z satisfy the system of equations above. Find max ( x , y , z ) \max(x,y,z) .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Now consider a monic polynomial g ( t ) g(t) having roots x , y , z x,y,z .We have that: g ( t ) = ( t x ) ( t y ) ( t z ) g ( t ) = t 3 ( x + y + z ) t 2 + ( x y + x z + y z ) t x y z \begin{aligned} g(t)&=(t-x)(t-y)(t-z)\\ g(t)&=t^3-(x+y+z)t^2+(xy+xz+yz)t-xyz \end{aligned} We have that: x + y + z = 1 ( x + y + z ) 2 = 1 2 x 2 + y 2 + z 2 + 2 ( x y + x z + y z ) = 1 35 + 2 ( x y + x z + y z ) = 1 x y + x z + y z = 17 \begin{aligned} \color{#20A900}{x+y+z} &\color{#20A900}{=1}\\ (x+y+z)^2 &=1^2\\ x^2+y^2+z^2+2(xy+xz+yz)&=1\\ 35+2(xy+xz+yz)&=1\\ \implies \color{#D61F06}{xy+xz+yz}&\color{#D61F06}{=-17}\end{aligned} To find the value of x y z xyz , we make use of the identity x 3 + y 3 + z 3 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 x y x z y z ) x^3+y^3+z^3-3xyz=\\(x+y+z)(x^2+y^2+z^2-xy-xz-yz)

Substituting the known values in,we get: 97 3 x y z = ( 1 ) ( 35 ( 17 ) ) 3 x y z = 45 x y z = 15 \begin{aligned} 97-3xyz&=(1)(35-(-17))\\ \implies 3xyz&=45\\ \implies \color{#3D99F6}{xyz}&=\color{#3D99F6}{15} \end{aligned} Substituting in the required values,we get: g ( t ) = t 3 t 2 + 17 t 15 g(t)=t^3-t^2+17t-15 By the Rational Root Theorem ,we get that t = 5 t=5 is a root of g ( t ) g(t) .Factoring,we get g ( t ) = ( t 5 ) ( t 2 + 4 t + 3 ) = ( t 5 ) ( t + 1 ) ( t + 3 ) g(t)=(t-5)(t^2+4t+3)=(t-5)(t+1)(t+3) .Hence ( x , y , z ) = { 5 , 1 , 3 } (x,y,z)=\{5,-1,-3\} and max ( x , y , z ) = 5 \text{max}(x,y,z)=\boxed{5}

Let's suppose, without loss of generality, that x y z |x| \leq |y| \leq |z| . Let's also assume - we shall justify this assumption later - that x x , y y and z z are integers. In this case, since 1 2 + 3 2 + 5 2 1^2+3^2+5^2 is the only way of writing 35 35 as a sum of 3 3 squares, it follows that x = 1 |x|=1 , y = 3 |y|=3 and z = 5 |z|=5 . From the eight possible triples ( x , y , z ) = ( ± 1 , ± 3 , ± 5 ) (x, y, z)=(\pm 1, \pm 3, \pm 5) , only ( 1 , 3 , 5 ) (-1, -3, 5) further satisfies the other two equations, therefore max ( x , y , z ) = 5 (x, y, z)=\boxed{5}\, .

Let's now prove that there are no other solutions to the given system of equations, except for permutations of ( 1 , 3 , 5 ) (-1, -3, 5) . Its uniqueness follows from the fact that z z satisfies a cubic equation whose roots are 1 -1 , 3 -3 and 5 5 . To derive such cubic equation, let's first combine the first two equations of the given system:

( 1 z ) 2 = ( x + y ) 2 = x 2 + y 2 + 2 x y = 35 z 2 + 2 x y x y = z 2 z 17 (1-z)^2 = (x+y)^2 = x^2+y^2+2xy = 35-z^2+2xy \Rightarrow xy = z^2-z-17 ;

this result, combined with all three equations, yields

97 z 3 = x 3 + y 3 = ( x + y ) ( x 2 x y + y 2 ) = ( 1 z ) [ 35 z 2 ( z 2 z 17 ) ] = ( 1 z ) ( 52 + z 2 z 2 ) z 3 z 2 17 z 15 = 0. 97-z^3 = x^3+y^3 = (x+y)(x^2-xy+y^2) = (1-z)[35-z^2-(z^2-z-17)] = (1-z)(52+z-2z^2) \Rightarrow z^3-z^2-17z-15 = 0.\, \square

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...