+ ( x + 1 ) 5 + ( x + 1 ) 4 ( x − 1 ) + ( x + 1 ) 3 ( x − 1 ) 2 ( x + 1 ) 2 ( x − 1 ) 3 + ( x + 1 ) ( x − 1 ) 4 + ( x − 1 ) 5 = 0
Find the sum of all x that satisfy the equation above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We know that a 6 − b 6 = ( a − b ) ( a 5 + a 4 b + a 3 b 2 + a 2 b 3 + a b 4 + b 5 )
put a = x + 1 and b = x − 1
so : ( x + 1 ) 5 + ( x + 1 ) 4 ( x − 1 ) + ( x + 1 ) 3 ( x − 1 ) 2 + ( x + 1 ) 2 ( x − 1 ) 3 + ( x + 1 ) ( x − 1 ) 4 + ( x − 1 ) 5 = 0
⟹ x + 1 − x + 1 ( x + 1 ) 6 − ( x − 1 ) 6 = 0
⟹ ( x + 1 ) 6 = ( x − 1 ) 6
⟹ { x + 1 = x − 1 impossible x + 1 = − x + 1 ⇒ x = 0
Bonus question : Prove that the sum of all non-real solutions of x is equals to 0.
Problem Loading...
Note Loading...
Set Loading...
a 6 − b 6 = ( a − b ) ( a 5 + a 4 b + a 3 b 2 + a 2 b 3 + a b 4 + b 5 )
a − b a 6 − b 6 = a 5 + a 4 b + a 3 b 2 + a 2 b 3 + a b 4 + b 5
Let a = x + 1 and b = x − 1 :
= ( x + 1 ) − ( x − 1 ) ( x + 1 ) 6 − ( x − 1 ) 6 ( x + 1 ) 5 + ( x + 1 ) 4 ( x − 1 ) + ( x + 1 ) 3 ( x − 1 ) 2 + ( x + 1 ) 2 ( x − 1 ) 3 + ( x + 1 ) ( x − 1 ) 4 + ( x − 1 ) 5 = 0
2 ( x + 1 ) 6 − ( x − 1 ) 6 = 0
3 x 5 + 1 0 x 3 + 3 = 0
x ( 3 x 2 + 1 ) ( x 2 + 3 ) = 0
x = { 0 , ± 3 i , ± i 3 }
Our answer is the sum of all the solutions:
0 + 3 i − 3 i + i 3 − i 3 = 0