Easy Algebra Manipulation

Algebra Level 2

( x + 1 ) 5 + ( x + 1 ) 4 ( x 1 ) + ( x + 1 ) 3 ( x 1 ) 2 + ( x + 1 ) 2 ( x 1 ) 3 + ( x + 1 ) ( x 1 ) 4 + ( x 1 ) 5 = 0 \begin{aligned} && (x+1)^5+(x+1)^4(x-1)+(x+1)^3(x-1)^2 \\ &+& (x+1)^2(x-1)^3+(x+1)(x-1)^4+(x-1)^5=0 \end{aligned}

Find the sum of all x x that satisfy the equation above.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Garrett Clarke
Jul 21, 2015

a 6 b 6 = ( a b ) ( a 5 + a 4 b + a 3 b 2 + a 2 b 3 + a b 4 + b 5 ) a^6-b^6=(a-b)(a^5+a^4b+a^3b^2+a^2b^3+ab^4+b^5)

a 6 b 6 a b = a 5 + a 4 b + a 3 b 2 + a 2 b 3 + a b 4 + b 5 \frac{a^6-b^6}{a-b}=a^5+a^4b+a^3b^2+a^2b^3+ab^4+b^5

Let a = x + 1 a=x+1 and b = x 1 b=x-1 :

( x + 1 ) 6 ( x 1 ) 6 ( x + 1 ) ( x 1 ) = ( x + 1 ) 5 + ( x + 1 ) 4 ( x 1 ) + ( x + 1 ) 3 ( x 1 ) 2 + ( x + 1 ) 2 ( x 1 ) 3 + ( x + 1 ) ( x 1 ) 4 + ( x 1 ) 5 = 0 \begin{aligned} &&\frac{(x+1)^6-(x-1)^6}{(x+1)-(x-1)} \\ &=&(x+1)^5+(x+1)^4(x-1)+(x+1)^3(x-1)^2 \\ && + (x+1)^2(x-1)^3+(x+1)(x-1)^4+(x-1)^5=0 \end{aligned}

( x + 1 ) 6 ( x 1 ) 6 2 = 0 \frac{(x+1)^6-(x-1)^6}{2}=0

3 x 5 + 10 x 3 + 3 = 0 3x^5+10x^3+3=0

x ( 3 x 2 + 1 ) ( x 2 + 3 ) = 0 x(3x^2+1)(x^2+3)=0

x = { 0 , ± i 3 , ± i 3 } x=\{0,\pm\frac{i}{\sqrt{3}},\pm i\sqrt{3}\}

Our answer is the sum of all the solutions:

0 + i 3 i 3 + i 3 i 3 = 0 0+\frac{i}{\sqrt{3}}-\frac{i}{\sqrt{3}}+i\sqrt{3}-i\sqrt{3}=\boxed{0}

Abdeslem Smahi
Jul 21, 2015

We know that a 6 b 6 = ( a b ) ( a 5 + a 4 b + a 3 b 2 + a 2 b 3 + a b 4 + b 5 ) a^6-b^6=(a-b)(a^5+a^4b+a^3b^2+a^2b^3+ab^4+b^5)

put a = x + 1 a=x+1 and b = x 1 b=x-1

so : ( x + 1 ) 5 + ( x + 1 ) 4 ( x 1 ) + ( x + 1 ) 3 ( x 1 ) 2 + ( x + 1 ) 2 ( x 1 ) 3 + ( x + 1 ) ( x 1 ) 4 + ( x 1 ) 5 = 0 (x+1)^5+(x+1)^4(x-1)+(x+1)^3(x-1)^2+(x+1)^2(x-1)^3+(x+1)(x-1)^4+(x-1)^5=0

( x + 1 ) 6 ( x 1 ) 6 x + 1 x + 1 = 0 \implies \frac{(x+1)^6-(x-1)^6}{x+1-x+1}=0

( x + 1 ) 6 = ( x 1 ) 6 \implies (x+1)^6=(x-1)^6

{ x + 1 = x 1 impossible x + 1 = x + 1 x = 0 \implies \begin{cases} & x+1=x-1 \text{ impossible } \\ & x+1=-x+1 \Rightarrow x=0 \end{cases}

Moderator note:

Bonus question : Prove that the sum of all non-real solutions of x x is equals to 0.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...