An algebra problem by Yitong Yab

Algebra Level 1

Suppose ( x + y ) 2 = 18 ( x+y)^2 = 18 and ( x y ) 2 = 12 (x-y)^2 =12 . Find the value of x 2 + y 2 x^2 + y^2 .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Hanif Robbani
Jul 31, 2014

( x + y ) 2 + ( x y ) 2 = 18 + 12 \Rightarrow (x+y)^2 + (x-y)^2 = 18 + 12

x 2 + 2 x y + y 2 + x 2 2 x y + y 2 = 30 \Rightarrow x^2+2xy+y^2 + x^2-2xy+y^2 = 30

2 x 2 + 2 y 2 = 30 \Rightarrow 2x^2+2y^2 = 30

2 ( x 2 + y 2 ) = 30 \Rightarrow 2(x^2+y^2) = 30

x 2 + y 2 = 30 2 \Rightarrow x^2+y^2 = \frac {30}{2}

x 2 + y 2 = 15 \Rightarrow x^2+y^2 = 15

Harish Chauhan
Jul 27, 2014

Expanding (x+y)^2=18 and (x-y)^2=12, we get

x^2+Y^2+2xy=18

x^2+y^2-2xy=12

Add the above two equations

2(x^2+y^2)=30

So

x^2+y^2=15

>>answer is 15

. .
Apr 30, 2021

x 2 + y 2 = ( x ± y ) 2 2 x y x ^ { 2 } + y ^ { 2 } = ( x \pm y ) ^ { 2 } \mp 2xy .

x 2 + 2 x y + y 2 = 18 , x 2 2 x y + y 2 = 12 4 x y = 6 x ^ { 2 } + 2xy + y ^ { 2 } = 18, x ^ { 2 } - 2xy + y ^ { 2 } = 12 \rightarrow 4xy = 6

x y = 3 2 \displaystyle \therefore xy = \frac { 3 } { 2 } .

x 2 + y 2 = 18 3 = 15 , 12 + 3 = 15 x ^ { 2 } + y ^ { 2 } = 18 - 3 = 15, 12 + 3 = 15 .

Hassan Raza
Jul 30, 2014

( x + y ) 2 = 18............... ( i ) ( x y ) 2 = 12............... ( i i ) E x p a n d i n g ( i ) & ( i i ) , w e h a v e x 2 + y 2 + 2 x y = 18.......... ( A ) a n d x 2 + y 2 2 x y = 12.......... ( B ) A d d i n g ( A ) & ( B ) , w e h a v e = > 2 ( x 2 + y 2 ) = 30 = > x 2 + y 2 = 30 / 2 = > x 2 + y 2 = 15 { ({ x }+y) }^{ 2 }=18...............(i)\\ { (x-y) }^{ 2 }=12...............(ii)\\ Expanding\quad (i)\quad \& \quad (ii),\quad we\quad have\\ { x }^{ 2 }+{ y }^{ 2 }+2xy=18..........(A)\quad and\\ { x }^{ 2 }+{ y }^{ 2 }-2xy=12..........(B)\\ Adding\quad (A)\quad \& \quad (B),\quad we\quad have\\ =>2({ x }^{ 2 }+{ y }^{ 2 })=30\\ =>{ x }^{ 2 }+{ y }^{ 2 }=30/2\\ =>\boxed { { x }^{ 2 }+{ y }^{ 2 }=15 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...