Easy Algebra

Algebra Level 1

Given that

x + x y = 83 , x+\frac{x}{y}=83,

find the value of

x + x y 2 y y . \sqrt{\frac{x+xy-2y}{y}}.


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Wenn Chuaan Lim
Jul 8, 2014
  1. Expand the square root.
    x + x y y 2 y y \sqrt{\frac{x+xy}{y}-\frac{2y}{y}}
    = x + x y y 2 =\sqrt{\frac{x+xy}{y}-2}

  2. The given expression is shown below.
    x + x y = 83 x+\frac{x}{y}=83
    x y + x = 83 y xy+x=83y
    x y + x y = 83 \frac{xy+x}{y}=83
  3. Substitute.
    x + x y y 2 \sqrt{\frac{x+xy}{y}-2}
    = 83 2 =\sqrt{83-2}
    = 81 =\sqrt{81}
    = 9 =\boxed{9}

Good, nice solution...

Heder Oliveira Dias - 6 years, 11 months ago

Nice!!! ^_^

Eric Roxas - 6 years, 1 month ago
Victor Loh
Jul 10, 2014

Since x + x y = 83 x+\frac{x}{y}=83 , we have

x + x y 2 y y \sqrt{\frac{x+xy-2y}{y}}

= x y + x y y 2 y y =\sqrt{\frac{x}{y}+\frac{xy}{y}-\frac{2y}{y}}

= x y + x 2 =\sqrt{\frac{x}{y}+x-2}

= 83 2 =\sqrt{83-2}

= 81 =\sqrt{81}

= 9 , =\boxed{9},

and we are done.

Nice simple solution ..

Allen Azuela - 6 years, 5 months ago
Sharky Kesa
Jul 8, 2014

x + x y = 83 x + \dfrac {x}{y} = 83

x y + x y = 83 \dfrac {xy + x}{y} = 83

x y + x = 83 y xy + x = 83y

Inputting it into the square root, we get

83 y 2 y y \sqrt {\dfrac {83y - 2y}{y}}

81 y y \sqrt {\dfrac {81y}{y}}

81 \sqrt {81}

9 9

x y + x y y 2 y y \sqrt{\frac{x}{y}+\frac{xy}{y}-\frac{2y}{y}} since, x + x y = 83 , x+\frac{x}{y}=83, = ( 83 x ) + x 2 \sqrt{(83-x)+x-2} = 81 \sqrt{81} = 9

Towhidd Towhidd
Jul 25, 2015

x+x/y=83 or, (x+xy)/y=83 or, (x+xy)/2y=83/2 [dividing both sides by 2] or, (x+xy-2y)/2y=(83-2)/2
or, (x+xy-2y)/y=81 [multiplying both sides by 2] sqrt((x+xy-2y)/y)=sqrt(81)=9 [ans]

Hassan Raza
Jul 30, 2014

G i v e n T h a t x + x y = 83 N o w F i n d , x + x y 2 y y = x y + x y y 2 y y = x + x y 2 = 83 2 : A s x + x y = 83 : = 81 = 9 Given\quad That\\ x+\frac { x }{ y } =83\\ Now\quad Find,\quad \sqrt { \frac { x+xy-2y }{ y } } \\ =\sqrt { \frac { x }{ y } +\frac { xy }{ y } -\frac { 2y }{ y } } =\sqrt { x+\frac { x }{ y } -2 } \\ =\sqrt { 83-2 } \quad \quad \quad \quad \quad \quad \quad \quad :As\quad x+\frac { x }{ y } =83:\\ =\sqrt { 81 } =\boxed { 9 }

Raymond Lin
Jul 12, 2014

x + x y 2 y y = x y + x 2 = 83 2 = 9 \sqrt{\frac{x+xy-2y}{y}} = \sqrt{\frac{x}{y}+x-2} = \sqrt{83-2} = \fbox{9}

Krishna Garg
Jul 11, 2014

From given equation we get x+xy =83 y,by substituting this valoue in underroot values we get underroot 81 that is 9 Ans. K.K. GARG,India

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...