Easy algebra...(3)

Algebra Level 3

3 1 ! + 2 ! + 3 ! + 4 2 ! + 3 ! + 4 ! + + 2017 2015 ! + 2016 ! + 2017 ! = 1 2 1 n ! \frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+\cdots+\frac{2017}{2015!+2016!+2017!}=\frac{1}{2}-\dfrac{1}{n!}

If the equation above holds true for positive integer n n , what is the sum of all digits of n n ?

Notation: ! ! denotes the factorial notation . For example: 8 ! = 1 × 2 × 3 × × 8 8! = 1\times 2 \times 3 \times \cdots \times 8 .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 12, 2018

S = 3 1 ! + 2 ! + 3 ! + 4 2 ! + 3 ! + 4 ! + + 2017 2015 ! + 2016 ! + 2017 ! = k = 1 2015 k + 2 k ! + ( k + 1 ) ! + ( k + 2 ) ! = k = 1 2015 k + 2 k ! ( 1 + k + 1 + ( k + 1 ) ( k + 2 ) ) = k = 1 2015 k + 2 k ! ( k + 2 ) 2 = k = 1 2015 1 k ! ( k + 2 ) = k = 1 2015 k + 1 ( k + 2 ) ! = k = 1 2015 k + 2 1 ( k + 2 ) ! = k = 1 2015 ( 1 ( k + 1 ) ! 1 ( k + 2 ) ! ) = 1 2 ! 1 2017 ! = 1 2 1 2017 ! \begin{aligned} S & = \frac 3{1!+2!+3!} + \frac 4{2!+3!+4!} + \cdots + \frac {2017}{2015!+2016!+2017!} \\ & = \sum_{k=1}^{2015} \frac {k+2}{k!+(k+1)!+(k+2)!} \\ & = \sum_{k=1}^{2015} \frac {k+2}{k!(1+k+1+(k+1)(k+2))} \\ & = \sum_{k=1}^{2015} \frac {k+2}{k!(k+2)^2} = \sum_{k=1}^{2015} \frac 1{k!(k+2)} = \sum_{k=1}^{2015} \frac {k+1}{(k+2)!} = \sum_{k=1}^{2015} \frac {k+2-1}{(k+2)!} \\ & = \sum_{k=1}^{2015} \left(\frac 1{(k+1)!} - \frac 1{(k+2)!} \right) \\ & = \frac 1{2!} - \frac 1{2017!} = \frac 12 - \frac 1{2017!} \end{aligned}

Therefore, n = 2017 n=2017 and the sum of its digits is 2 + 0 + 1 + 7 = 10 2+0+1+7 = \boxed{10} .

S P
Aug 12, 2018

i = 3 2017 i ( i 2 ) ! + ( i 1 ) ! + ( i ) ! = i = 3 2017 i ( i 2 ) ! { 1 + ( i 1 ) + ( i ) ( i 1 ) } = i = 3 2017 i ( i 2 ) ! ( i 2 ) = i = 3 2017 ( i 1 ) ( i ) ! = i = 3 2017 ( i ( i ) ! 1 ( i ) ! ) = i = 3 2017 ( 1 ( i 1 ) ! 1 ( i ) ! ) \begin{aligned}\displaystyle\sum_{i=3}^{2017}\dfrac{i}{(i-2)!+(i-1)!+(i)!}&=\displaystyle\sum_{i=3}^{2017}\dfrac{i}{(i-2)!\{1+(i-1)+(i)(i-1)\}}\\& =\displaystyle\sum_{i=3}^{2017}\dfrac{i}{(i-2)!(i^2)}\\& =\displaystyle\sum_{i=3}^{2017}\dfrac{(i-1)}{(i)!}\\& =\displaystyle\sum_{i=3}^{2017}\left(\dfrac{i}{(i)!}-\dfrac{1}{(i)!}\right)=\displaystyle\sum_{i=3}^{2017}\left(\dfrac{1}{(i-1)!}-\dfrac{1}{(i)!}\right)\end{aligned}

i = 3 2017 i ( i 2 ) ! + ( i 1 ) ! + ( i ) ! = 1 ( 2 ) ! 1 ( 3 ) ! + 1 ( 3 ) ! 1 ( 4 ) ! + + 1 ( 2016 ) ! 1 ( 2017 ) ! = 1 2 1 ( 2017 ) ! = 1 2 1 ( n ) ! \begin{aligned}\therefore \displaystyle\sum_{i=3}^{2017}\dfrac{i}{(i-2)!+(i-1)!+(i)!}&=\dfrac{1}{(2)!}-\dfrac{1}{(3)!}+\dfrac{1}{(3)!}-\dfrac{1}{(4)!}+\ldots+\dfrac{1}{(2016)!}-\dfrac{1}{(2017)!}\\& =\dfrac{1}{2}-\dfrac{1}{(2017)!}=\dfrac{1}{2}-\dfrac{1}{(n)!}\end{aligned}

n = 2017 the sum of the digits of n = 10 \therefore n=2017\implies \text{the sum of the digits of} ~n ~=\boxed{10}

We don't need brackets for 1 ! , 2 ! , 3 ! , . . . 2018 ! , i ! , n ! 1!, 2!, 3!, ...2018!, i!, n! .

Chew-Seong Cheong - 2 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...