Easy Algebraic Inequality

Algebra Level 2

Let a , b a,b and c c be nonnegative real numbers such that a b + c a\geq b+c . Find the minimum value of a b + c + b c + a + c a + b + 2 ( a b + b c + c a ) a 2 + b 2 + c 2 . \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{2(ab+bc+ca)}{a^2+b^2+c^2}.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

ChengYiin Ong
May 12, 2021

We have by Cauchy Schwarz Inequality and AM-GM, a b + c + b c + a + c a + b + 2 ( a b + b c + c a ) a 2 + b 2 + c 2 ( a + b + c ) 2 2 ( a b + b c + c a ) + 2 ( a b + b c + c a ) a 2 + b 2 + c 2 = a 2 + b 2 + c 2 2 ( a b + b c + c a ) + 2 ( a b + b c + c a ) a 2 + b 2 + c 2 + 1 3. \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{2(ab+bc+ca)}{a^2+b^2+c^2}\geqslant \frac{(a+b+c)^2}{2(ab+bc+ca)}+\frac{2(ab+bc+ca)}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{2(ab+bc+ca)}+\frac{2(ab+bc+ca)}{a^2+b^2+c^2}+1\ge 3.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...