Easy and Simple

Algebra Level 2

The equation 2 x 2 + q x + ( q 1 ) = 0 2x^2 + qx + (q-1) = 0 has the roots x x and y y . If x 2 + y 2 = 4 x^2 + y^2 = 4 , find q q

6 -6 and 2 2 3 -3 and 5 5 6 -6 and 2 -2 4 -4 and 4 4 2 -2 and 6 6

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

By Vieta's Formula.

x + y = q 2 \rightarrow x+y=\frac{-q}{2}
x y = q 1 2 \rightarrow xy=\frac{q-1}{2}
Now,
x 2 + y 2 = ( x + y ) 2 2 x y = 4 \Rightarrow x^2+y^2=(x+y)^2-2xy=4
( q 2 ) 2 2 × ( q 1 2 ) = 4 \Rightarrow \left(\frac{-q}{2}\right)^2-2× \left(\frac{q-1}{2}\right)=4
q 2 4 q 12 = 0 \Rightarrow q^2-4q-12=0
( q + 2 ) ( q 6 ) = 0 \Rightarrow (q+2)(q-6)=0
q = 6 , 2 \therefore q=6,-2

x 2 + y 2 = 4 x^2 + y^2 = 4

( x + y ) 2 2 x y = 4 (x+y)^2 - 2xy = 4

By using Vieta's Formula

( q 2 ) 2 2 ( q 1 2 ) = 4 (\frac{-q}{2})^2 - 2(\frac{q-1}{2}) = 4

q 2 4 q + 1 = 4 \frac{q^2}{4} - q + 1 = 4

q 2 4 q + 4 = 16 q^2 - 4q +4 = 16

q 2 4 q 12 = 0 q^2 - 4q - 12 = 0

( q 6 ) ( q + 2 ) = 0 (q-6)(q+2)= 0

q = 6 q = 6 or q = 2 q = -2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...