A geometry problem by Md Zuhair

Geometry Level 3

Find the area between x x -axis, y y -axis and x 1 sin θ + y 1 + sin θ = 1 cos θ \dfrac{x}{1 - \sin \theta} + \dfrac{y}{1 + \sin \theta} = \dfrac{1}{\cos \theta} , where θ \theta is indepemdent to x x and y y .


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 20, 2017

x 1 sin θ + y 1 + sin θ = 1 cos θ x ( 1 + sin θ ) + y ( 1 sin θ ) ( 1 + sin θ ) ( 1 sin θ ) = 1 cos θ x ( 1 + sin θ ) + y ( 1 sin θ ) 1 sin 2 θ = 1 cos θ x ( 1 + sin θ ) + y ( 1 sin θ ) cos 2 θ = 1 cos θ x ( 1 + sin θ ) + y ( 1 sin θ ) = cos θ The graph is a straight line for a θ . 0 + y 0 ( 1 sin θ ) = cos θ where y 0 is the y -axis intercept. θ y 0 = cos θ 1 sin θ x 0 ( 1 + sin θ ) + 0 = cos θ where x 0 is the x -axis intercept. θ x 0 = cos θ 1 + sin θ \begin{aligned} \frac x{1-\sin \theta} + \frac y{1+\sin \theta} & = \frac 1{\cos \theta} \\ \frac {x(1+\sin \theta) + y(1-\sin \theta)}{(1+\sin \theta) (1-\sin \theta)} & = \frac 1{\cos \theta} \\ \frac {x(1+\sin \theta) + y(1-\sin \theta)}{1-\sin^2 \theta} & = \frac 1{\cos \theta} \\ \frac {x(1+\sin \theta) + y(1-\sin \theta)}{\cos^2 \theta} & = \frac 1{\cos \theta} \\ x(1+\sin \theta) + y(1-\sin \theta) & = \cos \theta & \small \color{#3D99F6} \implies \text{The graph is a straight line for a }\theta. \\ 0 + {\color{#3D99F6}y_0}(1-\sin \theta) & = \cos \theta & \small \color{#3D99F6} \text{where }y_0 \text{ is the }y \text{-axis intercept.} \theta \\ \implies y_0 & = \frac {\cos \theta}{1-\sin \theta} \\ {\color{#3D99F6}x_0}(1+\sin \theta) + 0 & = \cos \theta & \small \color{#3D99F6} \text{where }x_0 \text{ is the }x \text{-axis intercept.} \theta \\ \implies x_0 & = \frac {\cos \theta}{1+\sin \theta} \end{aligned}

The area of between x x -axis, y y -axis and the graph is an area of a right-angled triangle:

A = 1 2 x 0 y 0 = 1 2 cos 2 θ ( 1 + sin θ ) ( 1 sin θ ) = cos 2 θ 2 ( 1 sin 2 θ ) = cos 2 θ 2 cos 2 θ = 1 2 = 0.5 \begin{aligned} A & = \frac 12 x_0 y_0 \\ & = \frac 12 \cdot \frac {\cos^2 \theta}{(1+\sin \theta)(1-\sin \theta)} \\ & = \frac {\cos^2 \theta}{2(1-\sin^2 \theta)} \\ & = \frac {\cos^2 \theta}{2\cos^2 \theta} \\ & = \frac 12 = \boxed{0.5} \end{aligned}

@Md Zuhair, isn't it more serious without using the kiddy huge text?

Chew-Seong Cheong - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...