Easy as 1, 2, 3?

Algebra Level 4

x + 2 × x + 3 × { x } = 6 \Large { \left \lceil x \right \rceil } + 2 \times {\left \lfloor x \right \rfloor } + 3 \times {\left \{ x \right \} } = 6

How many different values of x x satisfy the equation above?


Notations:

  • x \left \lceil x \right \rceil is the ceiling of x . x.
  • x \left \lfloor x \right \rfloor is the floor of x . x.
  • { x } \left \{ x \right \} is the fractional part of x . x.
3 4 An infinite number 1 None of these answers 0 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Zee Ell
Mar 16, 2017

We will use the following facts (the simple consequences of the definitions of the ceiling, floor and fractional part functions):

Fact 1:

x + { x } = x \lfloor x\rfloor + \lbrace x \rbrace = x

Fact 2:

x = x x Z \lceil x \rceil = \lfloor x\rfloor \iff x \in \mathbb {Z}

x = x + 1 x Z \lceil x \rceil = \lfloor x\rfloor + 1 \iff x \notin \mathbb {Z}

Now consider the following 2 cases:

x + 2 x + 3 { x } = 6 \lceil x \rceil + 2 \lfloor x\rfloor + 3 \lbrace x \rbrace = 6

Case I: x Z \text {Case I: } x \in \mathbb {Z}

3 x + 3 { x } = 6 3 \lfloor x\rfloor + 3 \lbrace x \rbrace = 6

3 x = 6 3x = 6

x = 2 x = 2

Case II: x Z \text {Case II: } x \notin \mathbb {Z}

3 x + 3 { x } + 1 = 6 3 \lfloor x\rfloor + 3 \lbrace x \rbrace + 1= 6

3 x = 5 3x = 5

x = 5 3 x = \frac {5}{3}

Since we have exactly two solutions for x, our answer should be 2 \text {Since we have exactly two solutions for x, our answer should be } \boxed {2}

Hmm, Quite Interesting Question, Isnt it?

Md Zuhair - 4 years, 2 months ago

Log in to reply

Yes, it is.

Zee Ell - 4 years, 2 months ago

Very nice solution... :). Upvoted✓

Rahil Sehgal - 4 years, 2 months ago
Geoff Pilling
Mar 16, 2017

Since x \left \lceil x \right \rceil and x \left \lfloor x \right \rfloor are integers,

3 × { x } 3 \times \left \{ x \right \} is an integer.

So, we have three choices for { x } \left \{ x \right \} :

  • 0 0
  • 1 3 \frac{1}{3}
  • 2 3 \frac{2}{3}

Lets consider each case, and see if it has a solution:


1) { x } = 0 \left \{ x \right \} = 0

3 x = 6 \implies 3x=6

x = 2 x=2

Yes, a solution exists.


2) { x } = 1 3 \left \{ x \right \} = \frac{1}{3}

Let x 0 = x x_0 = \left \lfloor x \right \rfloor (must be an integer)

x 0 + 1 + 2 x 0 + 1 = 6 x_0 + 1 + 2x_0 + 1 = 6

3 x 0 = 4 \implies 3x_0 = 4

No, no solution here.


3) { x } = 2 3 \left \{ x \right \} = \frac{2}{3}

x 0 + 1 + 2 x 0 + 2 = 6 x_0 + 1 + 2x_0 +2 = 6

3 x 0 = 3 \implies 3x_0 = 3

x 0 = 1 x_0 = 1

Yes, a solution exists.


Therefore, 2 \boxed2 solutions exist, x = 1 2 3 x = 1 \frac{2}{3} and x = 2 x = 2 .

Chew-Seong Cheong
Mar 17, 2017

Since the RHS is an integer, the LHS must be an integer. Since x \lceil x \rceil and x \lfloor x \rfloor are integers, 3 { x } 3\{x\} must be an integer. There are two cases when 3 { x } 3\{x\} is an integer { x } = 0 \{x\} = 0 and { x } = k 3 \{x\} = \dfrac k3 , where k k is either 1 or 2.

When { x } = 0 \{x\} = 0 , then x = x = x \lceil x \rceil = \lfloor x \rfloor = x and x + 2 x + 3 { x } = x + 2 x + 0 = 3 x = 6 \lceil x \rceil +2 \lfloor x \rfloor + 3\{x\} = x + 2x + 0 = 3x = 6 , x = 2 \implies x = 2 .

When { x } = k 3 \{x\} = \frac k3 , then

x + 2 x + 3 { x } = 6 x + 1 + 2 x + 3 × k 3 = 6 3 x + 1 + k = 6 x = 5 k 3 \begin{aligned} {\color{#3D99F6}\lceil x \rceil} + 2 \lfloor x \rfloor + 3\{x\} & = 6 \\ {\color{#3D99F6} \lfloor x \rfloor + 1} + 2 \lfloor x \rfloor + 3 \times \frac k3 & = 6 \\ 3\lfloor x \rfloor + 1 + k & = 6 \\ \lfloor x \rfloor & = \frac {5-k}3 \end{aligned}

Since the LHS is an integer, RHS must also be an integer. For the RHS to be an integer, k = 2 k = 2 , x = 1 \implies \lfloor x \rfloor = 1 and x = 1 2 3 x = 1\frac 23 .

Therefore, there are 2 \boxed{2} values of x x satisfying the equation.

Akeel Howell
Apr 13, 2017

First we start by looking for integer solutions. If x x is an integer, then { x } = 0 \{ x \} = 0 . So x + 2 × x + 3 × { x } = 6 x + 2 x = 6 x = 2 \lceil x \rceil + 2 \times \lfloor x \rfloor + 3 \times \{ x \} = 6 \ \implies x + 2x = 6 \ \implies x = 2 .

Noting that 6 6 is an integer, as well as x \lceil x \rceil , and x \lfloor x \rfloor , we see that 3 × { x } 3 \times \{ x \} must also be an integer and thus, x x must be a rational number of the form a 3 \dfrac{a}{3} . Since these must add up to 6, there are no negative solutions for x x , hence x x is of the form a 3 , a Z + \dfrac{a}{3}, a \in \mathbb{Z}^+ .

a 3 + 2 × a 3 + 3 × { a 3 } = 6 ( for a , n Z + a 3 = { n 1 3 , n 2 3 } a a 3 Z + ) \left \lceil \dfrac{a}{3} \right \rceil + 2 \times \left \lfloor \dfrac{a}{3} \right \rfloor + 3 \times \left \{ \dfrac{a}{3} \right \} = 6 \space \ \left( \text{for } \ {a, n \in \mathbb{Z}^+ \implies \dfrac{a}{3}} = \left \{ n\dfrac{1}{3},n\dfrac{2}{3} \right \} \ \forall \ a \ | \ \dfrac{a}{3} \notin \mathbb{Z}^+ \right) .

Checking a = 3 n + 1 , n Z + gives a 3 + 2 × a 3 = 5 \text{Checking } \ a = 3n+1, \ n \in \mathbb{Z}^+ \ \text{ gives } \ \left \lfloor \dfrac{a}{3} \right \rfloor + 2 \times \left \lfloor \dfrac{a}{3} \right \rfloor = 5 .

5 5 is an odd number (i.e., 5 { 2 n + 1 } , n Z 5 \in \{2n+1\}, \ n \in \mathbb{Z} ). Therefore a 3 \left \lceil \dfrac{a}{3} \right \rceil must also be odd since 2 × a 3 { 2 n } , n Z 2 \times \left \lfloor \dfrac{a}{3} \right \rfloor \in \{2n\}, \ n \in \mathbb{Z} .

Since a 3 \left \lceil \dfrac{a}{3} \right \rceil is odd, then a 3 \left \lfloor \dfrac{a}{3} \right \rfloor is even since a 3 = a 3 1 \left \lfloor \dfrac{a}{3} \right \rfloor = \left \lceil \dfrac{a}{3} \right \rceil - 1 .

Iterating across odd positive integers, a 3 \left \lceil \dfrac{a}{3} \right \rceil , we see that no a a satisfies a 3 + 2 × a 3 = 5 \left \lceil \dfrac{a}{3} \right \rceil + 2 \times \left \lfloor \dfrac{a}{3} \right \rfloor = 5 .

Checking a = 3 n + 2 , n Z + gives a 3 + 2 × a 3 + 3 × { a 3 } = 6 \text{Checking } \ a = 3n+2, \ n \in \mathbb{Z}^+ \ \text{ gives } \ \left \lceil \dfrac{a}{3} \right \rceil + 2 \times \left \lfloor \dfrac{a}{3} \right \rfloor + 3 \times \left \{ \dfrac{a}{3} \right \} = 6 .

Iterating across all even positive integers, a 3 \left \lceil \dfrac{a}{3} \right \rceil , we see that a = 5 a = 5 satisfies the equation and thus, x = 5 3 x = \dfrac{5}{3} is a solution to x + 2 × x + 3 × { x } = 6 \lceil x \rceil + 2 \times \lfloor x \rfloor + 3 \times \{ x \} = 6 .

Hence, we have x = { 5 3 , 2 } x = \left \{ \dfrac{5}{3}, 2\right \} .

Therefore, there are 2 \boxed{2} distinct values which satisfy the equation given.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...