Easy as A B C

Geometry Level 2

In A B C \triangle ABC , B C = a , C A = b , A B = c BC=a, CA=b, AB=c . If a b a \neq b , a 2 + b 2 a 2 b 2 = sin ( A + B ) sin ( A B ) \dfrac{a^2+b^2}{a^2-b^2}=\dfrac{\sin (A+B)}{\sin (A-B)} .

What is the range of sin A + sin B + sin C cos A + cos B + cos C \dfrac{\sin A+\sin B+\sin C}{\cos A+\cos B+ \cos C} ?

The range can be expressed as ( p , q ) (p,q) . Submit 10000 ( p + q ) \lfloor 10000(p+q) \rfloor .


The answer is 37071.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Oct 10, 2019

If a 2 + b 2 a 2 b 2 = sin ( A + B ) sin ( A B ) \frac{a^2 + b^2}{a^2 - b^2} = \frac{\sin(A + B)}{\sin(A - B)} , then by the sine addition formula a 2 + b 2 a 2 b 2 = sin A cos B + cos A sin B sin A cos B cos A sin B \frac{a^2 + b^2}{a^2 - b^2} = \frac{\sin A \cos B + \cos A \sin B}{\sin A \cos B - \cos A \sin B} , and after cross-multiplying this simplifies to a 2 cos A sin B = b 2 sin A cos B a^2 \cos A \sin B = b^2 \sin A \cos B , and after using the law of sines this simplifies to sin A cos A = sin B cos B \sin A \cos A = \sin B \cos B , which means 2 sin A cos A = 2 sin B cos B 2 \sin A \cos A = 2 \sin B \cos B or sin 2 A = sin 2 B \sin 2A = \sin 2B . Since a b a \neq b , 2 A = π 2 B 2A = \pi - 2B or A + B = π 2 A + B = \frac{\pi}{2} , which means C = π ( A + B ) = π π 2 = π 2 C = \pi - (A + B) = \pi - \frac{\pi}{2} = \frac{\pi}{2} . Therefore, A B C \triangle ABC is a right triangle.

This means y = sin A + sin B + sin C cos A + cos B + cos C = sin A + sin ( π 2 A ) + sin π 2 cos A + cos ( π 2 A ) + cos π 2 = sin A + cos A + 1 cos A + sin A + 0 = sin A + cos A + 1 sin A + cos A y = \frac{\sin A + \sin B + \sin C}{\cos A + \cos B + \cos C} = \frac{\sin A + \sin (\frac{\pi}{2} - A) + \sin \frac{\pi}{2}}{\cos A + \cos (\frac{\pi}{2} - A) + \cos \frac{\pi}{2}} = \frac{\sin A + \cos A + 1}{\cos A + \sin A + 0} = \frac{\sin A + \cos A + 1}{\sin A + \cos A} . The derivative of this is y = sin A cos A ( sin A + cos A ) 2 y' = \frac{\sin A - \cos A}{(\sin A + \cos A)^2} , which when set equal to 0 0 solves to A = B = π 2 A = B = \frac{\pi}{2} for y = sin π 2 + cos π 2 + 1 sin π 2 + cos π 2 = 1 + 2 2 y = \frac{\sin \frac{\pi}{2} + \cos \frac{\pi}{2} + 1}{\sin \frac{\pi}{2} + \cos \frac{\pi}{2}} = 1 + \frac{\sqrt{2}}{2} . The other extremes A = 0 A = 0 and A = π 2 A = \frac{\pi}{2} both solve to y = sin 0 + cos 0 + 1 sin 0 + cos 0 = 2 y = \frac{\sin 0 + \cos 0 + 1}{\sin 0 + \cos 0} = 2 .

Therefore the range of sin A + sin B + sin C cos A + cos B + cos C \frac{\sin A + \sin B + \sin C}{\cos A + \cos B + \cos C} is ( 1 + 2 2 , 2 ) (1 + \frac{\sqrt{2}}{2}, 2) , so that p = 1 + 2 2 p = 1 + \frac{\sqrt{2}}{2} , q = 2 q = 2 , p + q = 3 + 2 2 p + q = 3 + \frac{\sqrt{2}}{2} and 10000 ( p + q ) = 37071 \lfloor 10000(p + q) \rfloor = \boxed{37071} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...