A number theory problem by Viki Zeta

A number N N is defined as follows:

N = i = 20 120 i ! N = \sum_{i=20}^{120} i!

Find the remainder when N N is divided by 720.

Clarification : n ! n! represents factorial notation . For example, 8 ! = 8 × 7 × × 1 8! = 8 \times 7 \times \ldots \times 1


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Roger Erisman
Sep 9, 2016

Every number in N is going to have a factor of 6! = 720, therefore N / 720 will have a quotient with remainder 0.

Viki Zeta
Sep 10, 2016

N = i = 20 120 i ! N = 20 ! + 21 ! + 22 ! + + 120 ! We know that, 6! = 720 and also N = ( 6 ! × 7 × × 20 ) + ( 6 ! × 7 × × 21 ) + + ( 6 ! × 7 × × 120 ) N = 6 ! ( ( 7 × × 20 ) + ( 7 × × 20 ) + + ( 7 × × 20 ) ) N = 6 ! × m , m = ( ( 7 × × 20 ) + ( 7 × × 20 ) + + ( 7 × × 20 ) ) N = 6 ! × m + 0 Now, using Euclids division lemma, number N, When divided by 6!, leaves remainder ‘0’ The remainder is 0 N = \sum_{i=20}^{120} i!\\ N = 20! + 21! + 22! + \ldots + 120! \\ \text{We know that, 6! = 720 and also} \\ N = (6! \times 7 \times \ldots \times 20) + (6! \times 7 \times \ldots \times 21) + \ldots + (6! \times 7 \times \ldots \times 120) \\ N = 6! ( (7 \times \ldots \times 20) + (7 \times \ldots \times 20) + \ldots + (7 \times \ldots \times 20) ) \\ N = 6! \times m \text{, m = }( (7 \times \ldots \times 20) + (7 \times \ldots \times 20) + \ldots + (7 \times \ldots \times 20) ) \\ N = 6! \times m + 0 \\ \text{Now, using Euclids division lemma, number N, When divided by 6!, leaves remainder `0'} \\ \therefore \text{The remainder is } 0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...