∫ 0 2 π sin x ln ( sin x ) d x = ln ( e m )
The equation above holds true for real number m . Find m .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
First, we compute the indefinite integral: ∫ sin x ln ( sin x ) d x = − cos x ln ( sin x ) + ∫ cos x sin x cos x d x = − cos x ln ( sin x ) + ∫ sin x cos 2 x d x = − cos x ln ( sin x ) + ∫ sin x 1 − sin 2 x d x = − cos x ln ( sin x ) + ∫ ( csc x − sin x ) d x = − cos x ln ( sin x ) − ln ( csc x + cot x ) + cos x + C = − cos x ln ( sin x ) + ln ( sin x ) − ln ( 1 + cos x ) + cos x + C = ( 1 − cos x ) ln ( sin x ) − ln ( 1 + cos x ) + cos x + C This is defined at x = 2 π , but not at x = 0 , so we have to take a limit. ∫ 0 2 π sin x ln ( sin x ) d x = ( ( 1 − 0 ) ln ( 1 ) − ln ( 1 + 0 ) + 0 ) − x → 0 lim ( ( 1 − cos x ) ln ( sin x ) − ln ( 1 + cos x ) + cos x ) = 0 + x → 0 lim ( 1 / ( cos x − 1 ) ln ( sin x ) ) + ln ( 1 + 1 ) − 1 = x → 0 lim ( sin x / ( cos x − 1 ) 2 sin x / cos x ) + ln ( 2 ) − 1 by L’H o ˆ pital’s rule = x → 0 lim ( cos x ( cos x − 1 ) 2 ) + ln ( 2 ) − 1 = 1 ( 1 − 1 ) 2 + ln ( 2 ) − 1 = ln ( 2 ) − 1
∫ 0 2 1 π sin x ln ( sin x ) d x = 2 1 d u d ∫ 0 2 1 π sin 2 u − 1 x d x = 4 1 d u d B ( u , 2 1 ) ∣ ∣ ∣ u = 1 = 4 1 B ( u , 2 1 ) { ψ ( u ) − ψ ( u + 2 1 ) } ∣ ∣ ∣ u = 1 = 4 1 B ( 1 , 2 1 ) { ψ ( 1 ) − ψ ( 2 3 ) } = ln 2 − 1 = ln ( e 2 ) making the answer 2 .
Though your approach is brilliant I never thought of using digamma function but I am in high school so I solved it using elementary methods hence I found the question rather unique. If you don't mind try using simple integration technique to solve it. Though your method is better thanks for posting the solution.
Guys can you post your solutions how you did it?
Problem Loading...
Note Loading...
Set Loading...
∫ sin x ln ( sin x ) d x = ∫ sin x ln ( 1 − cos 2 x ) d x
d x d cos x = − sin x
d x = sin x − d cos x
substitute this to original integral which then becomes:
− ln ( 1 − cos 2 x ) d cos x
antiderivative of this form is same as ∫ 2 − 1 ln ( 1 − m 2 ) d m
∫ 2 − 1 ln ( ( 1 − m ) ( 1 + m ) ) d m
∫ 2 − 1 ln ( 1 − m ) d m + 2 − 1 ln ( 1 + m ) d m
2 1 ( ( 1 − m ) ln ( 1 − m ) + m − ( 1 + m ) ln ( 1 + m ) + m )
here m serves as cos x so the limits become cos 2 π a n d cos 0
evaluating it :
2 1 ( ( 1 − 0 ) ln ( 1 − 0 ) + 0 − ( 1 + 0 ) ln ( 1 + 0 ) + 0 ) - 2 1 ( ( 1 − 1 ) ln ( 1 − 1 ) + 1 − ( 1 + 1 ) ln ( 1 + 1 ) + 1 )
2 1 ( ( 1 ) ln ( 1 ) − ( 1 ) ln ( 1 ) ) - 2 1 ( ( 0 ) ln ( 0 ) + 1 − ( 2 ) ln ( 2 ) + 1 )
ln 2 − 1 = ln 2 − ln e = ln e 2