Easy but conceptual

Calculus Level 2

0 π 2 sin x ln ( sin x ) d x = ln ( m e ) \int_0^\frac \pi 2 \sin x \ln (\sin x) \ dx = \ln \left(\frac me\right)

The equation above holds true for real number m m . Find m m .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Amal Hari
Nov 13, 2019

sin x ln ( sin x ) d x = sin x ln ( 1 cos 2 x ) d x \displaystyle \int \sin x \ln \left( \sin x \right) dx= \displaystyle \int \sin x \ln \left(\sqrt{1-\cos^{2} x}\right) dx

d cos x d x = sin x \frac {d \cos x}{d x } =- \sin x

d x = d cos x sin x d x =\frac{-d \cos x }{\sin x }

substitute this to original integral which then becomes:

ln ( 1 cos 2 x ) d cos x -\ln\left( \sqrt{1-\cos^{2}x}\right) d\cos x

antiderivative of this form is same as 1 2 ln ( 1 m 2 ) d m \displaystyle \int \frac{-1}{2} \ln\left( 1-m^{2} \right) dm

1 2 ln ( ( 1 m ) ( 1 + m ) ) d m \displaystyle \int \frac{-1}{2} \ln\left(\left( 1-m\right)\left( 1+m\right) \right)dm

1 2 ln ( 1 m ) d m + 1 2 ln ( 1 + m ) d m \displaystyle \int \frac{-1}{2} \ln \left( 1-m\right) dm + \frac{-1}{2}\ln\left( 1+m\right) dm

1 2 ( ( 1 m ) ln ( 1 m ) + m ( 1 + m ) ln ( 1 + m ) + m ) \frac{1}{2} \left(\left( 1-m\right)\ln(1-m) +m - \left(1+m\right)\ln\left(1+m\right) +m \right)

here m serves as cos x \cos x so the limits become cos π 2 a n d cos 0 \cos \frac{\pi}{2} and \cos0

evaluating it :

1 2 ( ( 1 0 ) ln ( 1 0 ) + 0 ( 1 + 0 ) ln ( 1 + 0 ) + 0 ) \frac{1}{2} \left(\left( 1-0\right)\ln(1-0) +0 - \left(1+0\right)\ln\left(1+0\right) +0 \right) - 1 2 ( ( 1 1 ) ln ( 1 1 ) + 1 ( 1 + 1 ) ln ( 1 + 1 ) + 1 ) \frac{1}{2} \left(\left( 1-1\right)\ln(1-1) +1 - \left(1+1\right)\ln\left(1+1\right) +1 \right)

1 2 ( ( 1 ) ln ( 1 ) ( 1 ) ln ( 1 ) ) \frac{1}{2} \left(\left( 1\right)\ln(1) - \left(1\right)\ln\left(1\right) \right) - 1 2 ( ( 0 ) ln ( 0 ) + 1 ( 2 ) ln ( 2 ) + 1 ) \frac{1}{2} \left(\left( 0\right)\ln(0) +1 - \left(2\right)\ln\left(2\right) +1 \right)

ln 2 1 = ln 2 ln e = ln 2 e \ln 2 - 1= \ln 2 -\ln e =\ln\frac{2}{e}

Joseph Newton
Nov 10, 2019

First, we compute the indefinite integral: sin x ln ( sin x ) d x = cos x ln ( sin x ) + cos x cos x sin x d x = cos x ln ( sin x ) + cos 2 x sin x d x = cos x ln ( sin x ) + 1 sin 2 x sin x d x = cos x ln ( sin x ) + ( csc x sin x ) d x = cos x ln ( sin x ) ln ( csc x + cot x ) + cos x + C = cos x ln ( sin x ) + ln ( sin x ) ln ( 1 + cos x ) + cos x + C = ( 1 cos x ) ln ( sin x ) ln ( 1 + cos x ) + cos x + C \begin{aligned} \int\sin x\ln(\sin x)dx&=-\cos x\ln(\sin x)+\int\cos x\frac{\cos x}{\sin x}dx\\ &=-\cos x\ln(\sin x)+\int\frac{\cos^2x}{\sin x}dx\\ &=-\cos x\ln(\sin x)+\int\frac{1-\sin^2x}{\sin x}dx\\ &=-\cos x\ln(\sin x)+\int(\csc x-\sin x)dx\\ &=-\cos x\ln(\sin x)-\ln(\csc x+\cot x)+\cos x+C\\ &=-\cos x\ln(\sin x)+\ln(\sin x)-\ln(1+\cos x)+\cos x+C\\ &=(1-\cos x)\ln(\sin x)-\ln(1+\cos x)+\cos x+C \end{aligned} This is defined at x = π 2 x=\frac{\pi}2 , but not at x = 0 x=0 , so we have to take a limit. 0 π 2 sin x ln ( sin x ) d x = ( ( 1 0 ) ln ( 1 ) ln ( 1 + 0 ) + 0 ) lim x 0 ( ( 1 cos x ) ln ( sin x ) ln ( 1 + cos x ) + cos x ) = 0 + lim x 0 ( ln ( sin x ) 1 / ( cos x 1 ) ) + ln ( 1 + 1 ) 1 = lim x 0 ( sin x / cos x sin x / ( cos x 1 ) 2 ) + ln ( 2 ) 1 by L’H o ˆ pital’s rule = lim x 0 ( ( cos x 1 ) 2 cos x ) + ln ( 2 ) 1 = ( 1 1 ) 2 1 + ln ( 2 ) 1 = ln ( 2 ) 1 \begin{aligned} \int_0^{\frac{\pi}2} \sin x\ln(\sin x)dx&=\big((1-0)\ln(1)-\ln(1+0)+0\big)-\lim_{x\to0}\big((1-\cos x)\ln(\sin x)-\ln(1+\cos x)+\cos x\big)\\ &=0+\lim_{x\to0}\left(\frac{\ln(\sin x)}{1/(\cos x-1)}\right)+\ln(1+1)-1\\ &=\lim_{x\to0}\left(\frac{\sin x/\cos x}{\sin x/(\cos x-1)^2}\right)+\ln(2)-1\qquad\text{by L'Hôpital's rule}\\ &=\lim_{x\to0}\left(\frac{(\cos x-1)^2}{\cos x}\right)+\ln(2)-1\\ &=\frac{(1-1)^2}1+\ln(2)-1\\ &=\ln(2)-1 \end{aligned}

Mark Hennings
Nov 10, 2019

0 1 2 π sin x ln ( sin x ) d x = 1 2 d d u 0 1 2 π sin 2 u 1 x d x = 1 4 d d u B ( u , 1 2 ) u = 1 = 1 4 B ( u , 1 2 ) { ψ ( u ) ψ ( u + 1 2 ) } u = 1 = 1 4 B ( 1 , 1 2 ) { ψ ( 1 ) ψ ( 3 2 ) } = ln 2 1 = ln ( 2 e ) \begin{aligned} \int_0^{\frac12\pi}\sin x \ln(\sin x)\,dx & = \; \frac12 \frac{d}{du} \int_0^{\frac12\pi} \sin^{2u-1}x\,dx \; = \; \frac14 \frac{d}{du}B(u,\tfrac12) \Big|_{u=1} \\ & = \; \frac14B(u,\tfrac12)\big\{\psi(u) - \psi(u+\tfrac12)\big\}\Big|_{u=1} \; = \; \frac14B(1,\tfrac12)\big\{\psi(1)-\psi(\tfrac32)\big\} \; = \; \ln2 - 1 \; = \; \ln\left(\frac{2}{e}\right) \end{aligned} making the answer 2 \boxed{2} .

Though your approach is brilliant I never thought of using digamma function but I am in high school so I solved it using elementary methods hence I found the question rather unique. If you don't mind try using simple integration technique to solve it. Though your method is better thanks for posting the solution.

Yash Verma - 1 year, 7 months ago
Yash Verma
Nov 10, 2019

Guys can you post your solutions how you did it?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...