An algebra problem by Suresh Palaparthi

Algebra Level 2

What is the value of sin 6 θ + cos 6 θ + 3 sin 2 θ × cos 2 θ ? \sin^{6} \theta + \cos^{6} \theta +3 \sin^{2} \theta \times \cos^{2} \theta ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Vu Vincent
Jul 25, 2017

sin 6 θ + cos 6 θ + 3 sin 2 θ × cos 2 θ \sin^{6} \theta + \cos^{6} \theta +3 \sin^{2} \theta \times \cos^{2} \theta = sin 6 θ + cos 6 θ + 3 sin 2 θ × cos 2 θ × 1 = \sin^{6} \theta + \cos^{6} \theta +3 \sin^{2} \theta \times \cos^{2} \theta \times 1 = sin 6 θ + cos 6 θ + 3 sin 2 θ × cos 2 θ × ( s i n 2 θ + c o s 2 θ ) = \sin^{6} \theta + \cos^{6} \theta +3 \sin^{2} \theta \times \cos^{2} \theta \times (sin^2 \theta + cos^2 \theta)

Recall identity : ( a + b ) 3 = a 3 + b 3 + 3 a b ( a + b ) (a+b)^3 = a^3 + b^3 + 3ab(a+b)

Therefore

= sin 6 θ + cos 6 θ + 3 sin 2 θ × cos 2 θ × ( s i n 2 θ + c o s 2 θ ) = \sin^{6} \theta + \cos^{6} \theta +3 \sin^{2} \theta \times \cos^{2} \theta \times (sin^2 \theta + cos^2 \theta) = ( s i n 2 θ + c o s 2 θ ) 3 = (sin^2 \theta + cos^2 \theta)^3 = 1 = \boxed{1}

Chew-Seong Cheong
Jun 25, 2017

X = sin 6 θ + cos 2 θ + 3 sin 2 θ cos 2 θ = ( sin 2 θ + cos 2 θ ) 3 3 sin 2 θ cos 2 θ ( sin 2 θ + cos 2 θ ) + 3 sin 2 θ cos 2 θ = 1 3 3 sin 2 θ cos 2 θ ( 1 ) + 3 sin 2 θ cos 2 θ = 1 \begin{aligned} X & = \sin^6 \theta +\cos^2 \theta + 3 \sin^2 \theta \cos^2 \theta \\ & = {\color{#3D99F6}\left(\sin^2 \theta + \cos^2 \theta \right)}^3 - 3\sin^2 \theta \cos^2 \theta {\color{#3D99F6}\left(\sin^2 \theta + \cos^2 \theta \right)} + 3 \sin^2 \theta \cos^2 \theta \\ & = {\color{#3D99F6}1}^3 - 3\sin^2 \theta \cos^2 \theta {\color{#3D99F6}\left(1\right)} + 3 \sin^2 \theta \cos^2 \theta \\ & = \boxed{1} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...